Modern deep learning challenges leverage increasingly larger datasets and more complex models. As a result, significant computational power is required to train models effectively and efficiently. Learning to distribute data across multiple GPUs during deep learning model training makes possible an incredible wealth of new applications utilizing deep learning. Additionally, the effective use of systems with multiple GPUs reduces training time, allowing for faster application development and much faster iteration cycles. Teams who are able to perform training using multiple GPUs will have an edge, building models trained on more data in shorter periods of time and with greater engineer productivity. This workshop teaches you techniques for data-parallel deep learning training on multiple GPUs to shorten the training time required for data-intensive applications. Working with deep learning tools, frameworks, and workflows to perform neural network training, you’ll learn how to decrease model training time by distributing data to multiple GPUs, while retaining the accuracy of training on a single GPU.
Learning Objectives
By participating in this workshop, you’ll learn how to:
- Understand how data parallel deep learning training is performed using multiple GPUs
- Achieve maximum throughput when training, for the best use of multiple GPUs
- Distribute training to multiple GPUs using Pytorch Distributed Data Parallel
- Understand and utilize algorithmic considerations specific to multi-GPU training performance and accuracy
Prerequisites
To take the most out of this workshop, participants are expected to have experience with deep learning using Python. It will be helpful if you are comfortable with some or all of the concepts covered in the Fundamentals of Deep Learning course.
This workshop will consist of four 2h-sessions and will be hosted on Zoom. The sessions are scheduled for Tuesdays at 2 PM CT, starting on 10/18/2022.
Registrations will close on 10/17/2022 at 11:59 AM and will be limited to 100 registrants.