Introduction to PyTorch

Joshua Yao-Yu Lin (林曜宇) University of Illinois at Urbana-Champaign

[@HAL training 2021.9.29]

Center for Artificial Intelligence Innovation

NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS I NCSA

Joshua Yao-Yu Lin

- My research spans a wide range of Machine Learning application in Astrophysics
- Research Interest: dark matter, supermassive black holes, neuroscience, machine learning
- Before Joining UIUC, I got my MS at NTU, and BS at NTHU (All in physics).
- ML intern experience: Simons Foundation, Google Research
- I've used PyTorch for most of my deep learning projects!

Physics PhD student (2016-Present)

University of Illinois at Urbana-Champaign

Agenda

- Overview of PyTorch & Deep Learning
- Pytorch Basics
- Train a Convolutional neural networks to classify MNIST data
- Train a Variational Autoencoder to generate new MNIST data
- Q & A section

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

CLASSICAL MACHINE LEARNING

«Make the best outfits from the given clothes»

Credits: https://vas3k.com/blog/machine_learning/

What is PyTorch?

- Open source machine learning library
- Developed by Facebook's Al Research lab
- It leverages the power of GPUs
- Automatic computation of gradients
- Makes it easier to test and develop new ideas.

Why PyTorch?

Why PyTorch?

- It is pythonic concise, close to Python conventions
- Strong GPU support
- Autograd automatic differentiation
- Many algorithms and components are already implemented
- Similar to NumPy

Why PyTorch?

Computation Graph

Numpy

```
import numpy as np
np.random.seed(0)

N, D = 3, 4

x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_z = grad_a * y
grad_y = grad_a * x
```

Tensorflow

```
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
with tf.device('/gpu:0'):
    x = tf.placeholder(tf.float32)
    y = tf.placeholder(tf.float32)
    z = tf.placeholder(tf.float32)
    a = x * y
    b = a + z
    c = tf.reduce sum(b)
grad x, grad y, grad z = tf.gradients(c, [x, y, z])
with tf.Session() as sess:
    values = {
        x: np.random.randn(N, D),
        y: np.random.randn(N, D),
        z: np.random.randn(N, D),
    out = sess.run([c, grad x, grad y, grad z],
                   feed dict=values)
    c val, grad x val, grad v val, grad z val = out
```

PyTorch

```
import torch
N, D = 3, 4

x = torch.rand((N, D),requires_grad=True)
y = torch.rand((N, D),requires_grad=True)
z = torch.rand((N, D),requires_grad=True)
a = x * y
b = a + z
c=torch.sum(b)
c.backward()
```

Pytorch Tensor

- Basic block of pytorch
- Similar to numpy array
- easy to operate on GPU/CPU
- Good for building neural networks

Demo: pytorch basics

https://bit.ly/2XWflcL

MNIST for image classification

MNIST in pixels

Introduction to neural networks with pytorch

Convolution & Feature Map generation

- Intermediate output insides the hidden layers of neural networks
- "Down sample"
- Single input can induce multiple feature maps (with different kernels)

Max pooling

Loss function: Cross-Entropy

Loss function: Cross-Entropy

Back propagation

Introduction to neural networks with pytorch

Let's build a neural network together!

https://bit.ly/3EZ7mMR

Generative models

- Neural networks are not only for classification (supervised learning)!
- Generative models: creating new data with deep neural networks
- example of generative models:
 - Generative adversarial networks (GAN)
 - Variational Autoencoder (VAE)
 - Normalizing Flow

Variational Autoencoder (VAE)

Q&A

Feel free to reach out to me:

joshualin24@gmail.com

Twitter: joshualin24

Github: joshualin24