Physics Informed Deep Learning

Shawn Rosofsky

UIUC Department of Physics

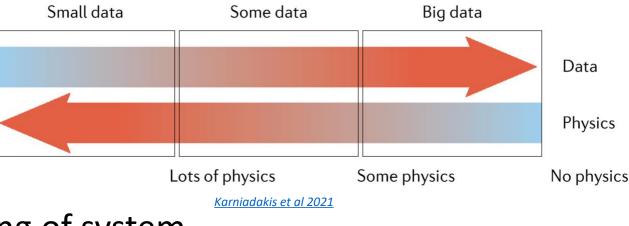
NCSA Gravity group

HAL Training Series

Introduction

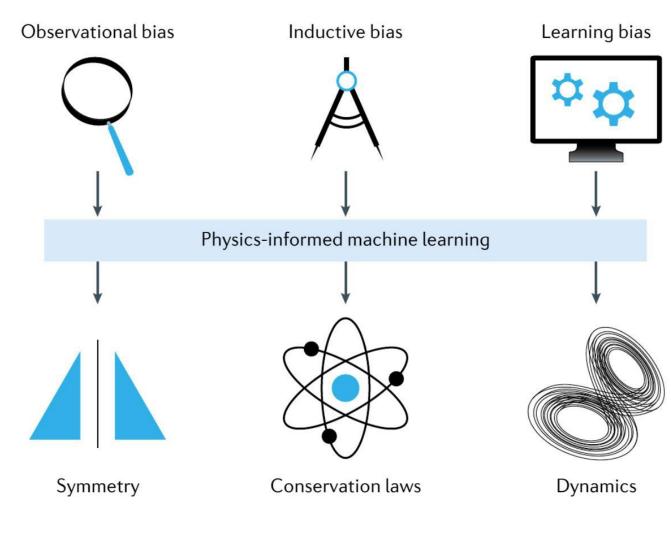
- Deep learning has expanded in recent years
 - Availability of big data
 - Improvements in hardware (GPU/TPU)
 - Open source libraries
- Data is not always available in all cases
 - Expensive
 - Time consuming
- But may have good physical understanding of system
 - Scientific experiments
 - Hardware design

Solution: Include physics of problem into neural networks to train with much less data



How Can Physics Help?

- Neural networks retain bias of its training data
 - Gender bias in NLP (Sun et al 2019)
 - Racial and age bias in image recognition (Nagpal et al 2019)
- Some bias can be removed
 - Data augmentation
 - Increase data quantity
- Physics knowledge can remove data biases system with well understood physics
 - Symmetries
 - Conservation laws
 - Partial differential equations (PDEs)

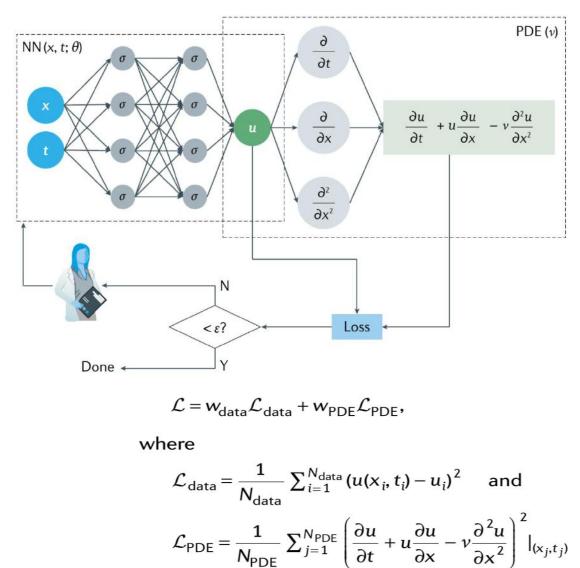


<u>Karniadakis et al 2021</u>

How to Encode Physics into Neural Networks

- Add known physical laws into loss function
 - Introduces soft constraints
 - Improves with more training
- Encode derivatives by employing automatic differentiation
 - Accurate
 - Fast
- Weight data and physical laws to improve training
- May need second derivatives \rightarrow No ReLU activation function
- Normalize equations

HAL Training Series: Physics Informed Deep Learning



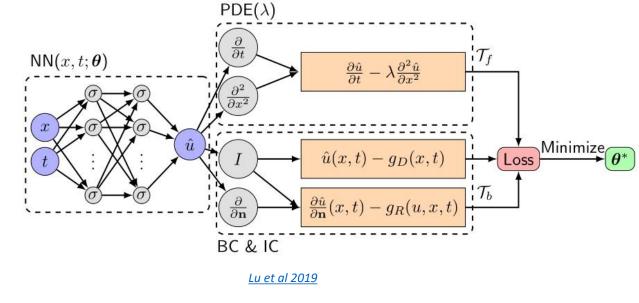
Karniadakis et al 2021

Traditional Physics Informed Neural Networks (PINNs)

- PINNs are the most well known type of physics informed deep learning models
- Inputs
 - Coordinates (space and/or time)
 - May add auxiliary variables to input
- Outputs
 - PDE solution fields
 - May add other outputs (inverse problems)
- Train by constraining encoded physics
 - Randomly sample domain
 - May add known data

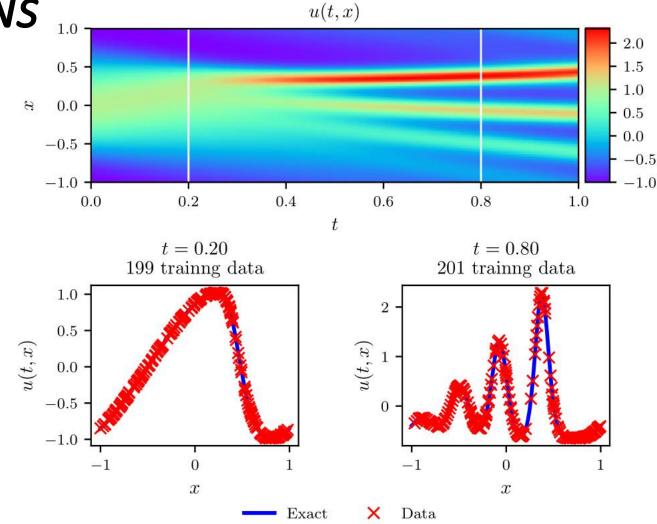
• Trained for a single case

- 1 set of ICs/BCs
- 1 set of PDEs \rightarrow cannot modify source terms



Types of Problems for PINNs

- Forward problems
 - Solve PDEs within specified domain
 - We will look at using PINNs to solve various forward problems
- Inverse problems
 - Given data that obeys a known (or partially known) PDE
 - Compute quantities of interest
 - Flow field from sensors at a few locations
 - Unknown PDE coefficients from data
 - We will look at finding unknown coefficients for a Lorentz system



Correct PDE	$u_t + uu_x + 0.0025u_{xxx} = 0$
Identified PDE (clean data)	$u_t + 1.000uu_x + 0.0025002u_{xxx} = 0$
Identified PDE (1% noise)	$u_t + 0.999uu_x + 0.0024996u_{xxx} = 0$

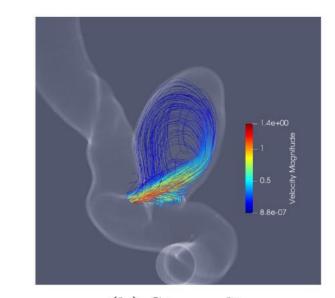
Raissi et al 2019

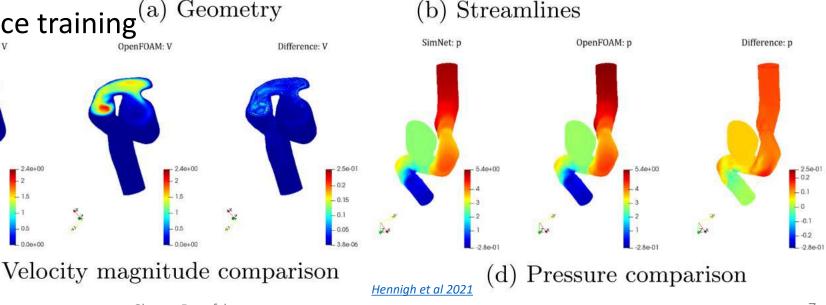
6

Applications of PINNs Forward Problems

- Optimize PDE over auxiliary variables
 - FPGA design optimization of heatsink geometric configurations (Hennigh et al 2021)
- Simulations over very complex geometries
 - Brain aneurysm blood flow (Hennigh et al 2021)
 - Use transfer learning to reduce training (a) Geometry simNet: V OpenFOAM: V Di

(c)

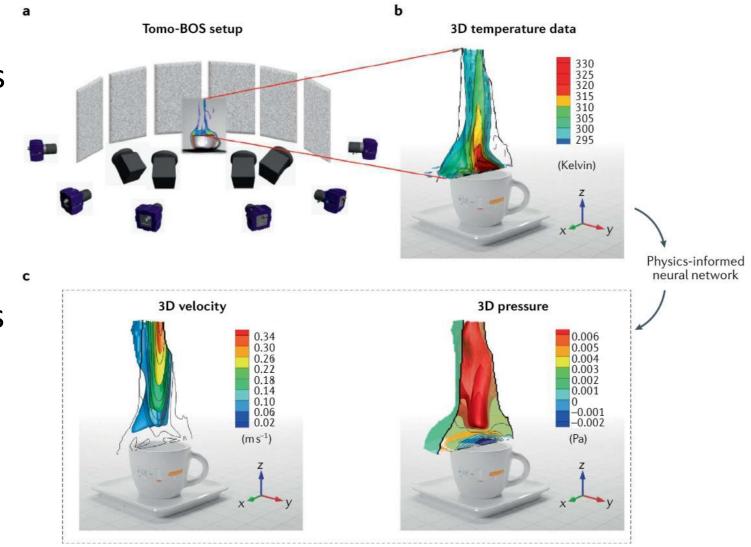




HAL Training Series: Physics Informed Deep Learning

Applications of PINNs Inverse Problems

- Reconstruct fields from limited sensor data in ill-posed problems
 - Construct fluid flow from a coffee cup (Cai et al. 2021)
 - Used temperature measurements to construct velocity and pressure data
- Analysis of scientific experiments
 - Well understood models
 - Controlled environments



Karniadakis et al 2021

PINN Software

- Deepxde (<u>https://github.com/lululxvi/deepxde</u>) → Will use deepxde for our tutorials
- NVIDIA Modulus/SimNet (Modulus | NVIDIA Developer)
- SciANN (<u>https://github.com/sciann/sciann</u>)
- Elvet (<u>https://gitlab.com/elvet/elvet</u>)
- TensorDiffEq (<u>https://github.com/tensordiffeq/TensorDiffEq</u>)
- NeuroDiffEq (<u>https://github.com/analysiscenter/pydens</u>)
- NeuralPDE (<u>https://github.com/SciML/NeuralPDE.jl</u>)
- Universal Differential Equations for Scientific Machine Learning (<u>https://github.com/ChrisRackauckas/universal_differential_equations</u>)
- IDRLnet (<u>https://github.com/idrl-lab/idrlnet</u>)

HAL Training Series: Physics Informed Deep Learning

Limitations of PINNs

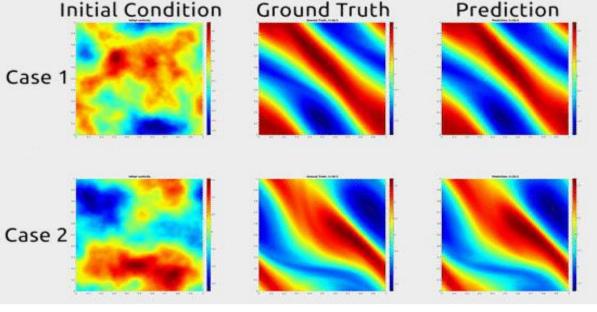
- Only trained for a single set of ICs/BCs/source terms → need to retrain for each new configuration
- Pure PINNs make poor surrogate models
- Will look at operator networks for solving PDEs with variable input fields

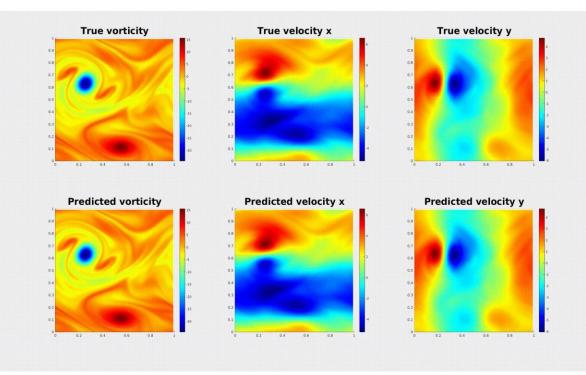
PINNs Exercises

• <u>shawnrosofsky/HAL-Physics-Informed-AI-Tutorial (github.com)</u>

Operator Networks

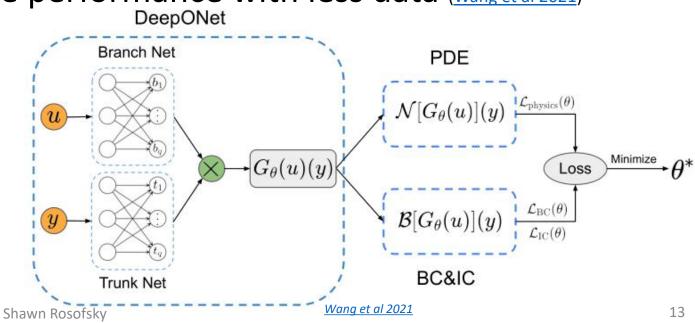
- Learn output field for a given input field
- Can learn variable ICs, BCs, and/or source terms
- Need to generate data for many input fields
- May use physics information to improve performance
- Examples
 - DeepONets (<u>Lu et al 2021</u>)
 - Physics Informed DeepONets (Wang et al 2021)
 - Graph Operator Networks (Li et al 2020)
 - Fourier Operator Networks (Li et al 2020)
 - PINOs (Li et al 2021)





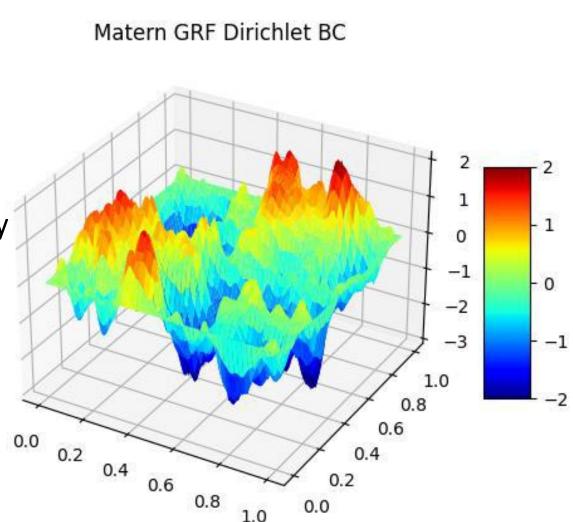
Physics Informed DeepONets

- DeepONets can generalize PDE solutions (Lu et al 2021)
 - Input field $u \rightarrow$ Initial conditions, source terms, and/or boundary conditions
 - Input coordinate $y \rightarrow$ space and time
 - Output operator $G(u)(y) \rightarrow PDE$ solution
 - Difference between data s and operator G(u)(y) is our loss \mathcal{L}_{data}
- Physics informed DeepONets improve performance with less data (Wang et al 2021)
 - Incorporate PDE into loss $\mathcal{L}_{physics}$
 - Incorporate ICs into loss \mathcal{L}_{IC}
 - Incorporate BCs into loss \mathcal{L}_{BC}



Training Physics Informed DeepONets

- Generate u using Gaussian random fields (GRF)
 - Use RBF or Matérn kernel to obtain spatially correlated random data
 - Apply length scale *l* associated with typical spatial deviations
 - Expand in Fourier components to obey boundary conditions
- Run simulations for each *u* to generate training data
- Sample the solution space during training



Physics Informed DeepONet Tests

- 1D Diffusion Reaction Equation
 - $\partial_t s = D \ \partial_{xx} s + k \ s^2 + u(x)$
 - *u* is a source term
 - Homogenous Dirichlet BC
 - Zero IC $\rightarrow s(x, 0) = 0$
 - k = D = 0.01

• 1D Viscous Burgers Equation

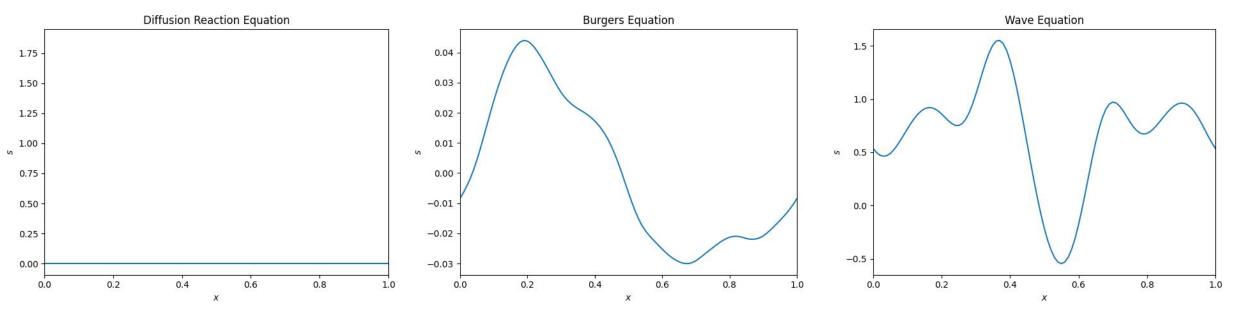
•
$$\partial_t s + s \, \partial_x s - \nu \, \partial_{xx}^2 s = 0$$

- *u* is the IC
- Periodic BC
- $\nu = 0.01$

1D Wave Equation

•
$$\partial_{tt}s - c^2 \partial_{xx}^2 s = 0$$

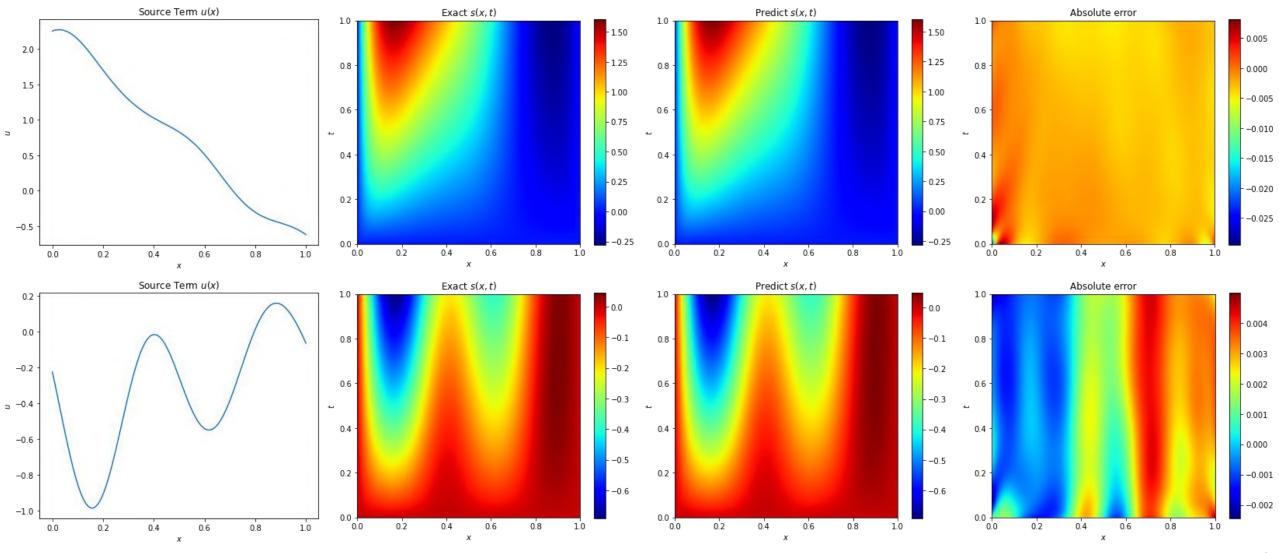
- *u* is the IC
- Periodic BC
- *c* = 1



HAL Training Series: Physics Informed Deep Learning

Shawn Rosofsky

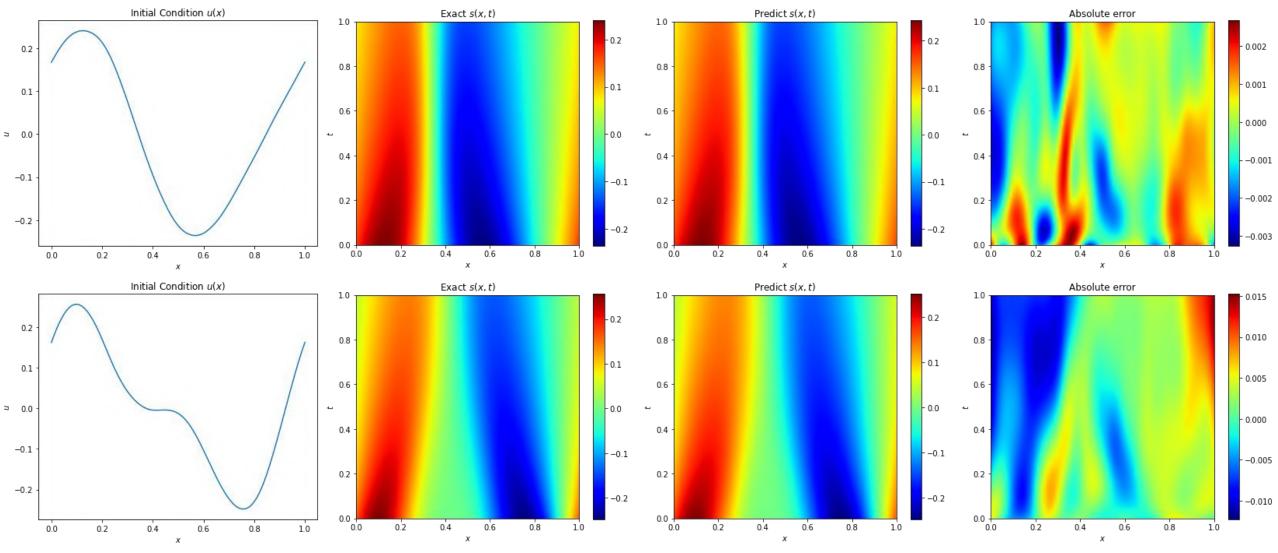
Diffusion Reaction Equation Results on Test Data: $\partial_t s = D \ \partial_{xx} s + k \ s^2 + u(x)$



HAL Training Series: Physics Informed Deep Learning

Shawn Rosofsky

Viscous Burgers Equation Results on Test Data $\partial_t s + s \ \partial_x s - v \ \partial_{xx}^2 s = 0$

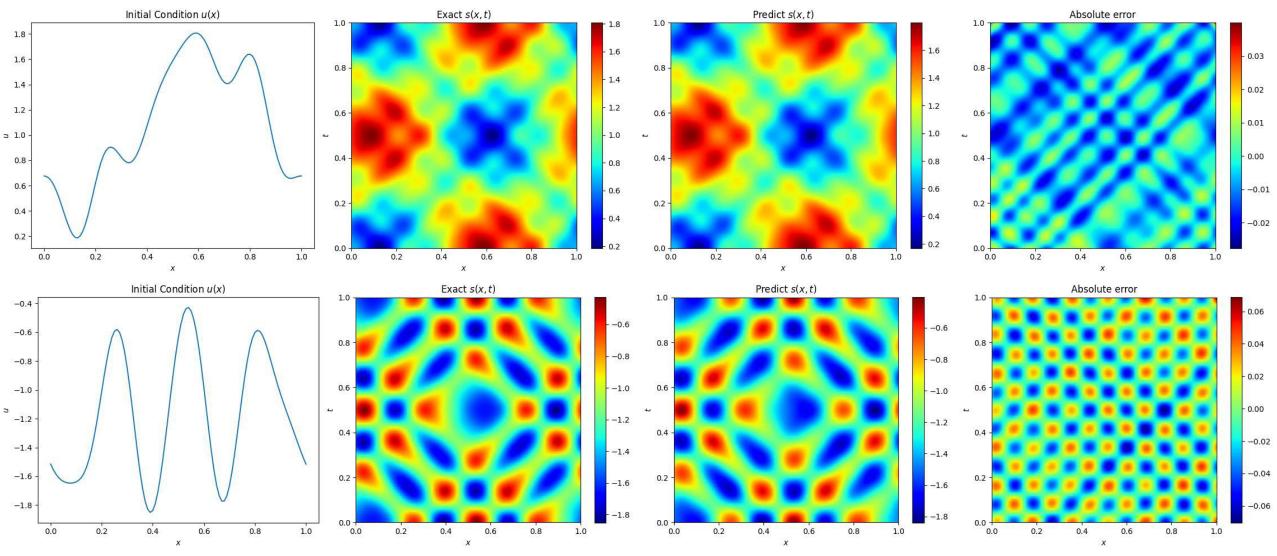


HAL Training Series: Physics Informed Deep Learning

Shawn Rosofsky

17

Wave Equation Results on Test Data $\partial_{tt} s - c^2 \partial_{xx}^2 s = 0$



HAL Training Series: Physics Informed Deep Learning

Shawn Rosofsky

Physics Informed DeepONet Excercises

<u>shawnrosofsky/HAL-Physics-Informed-AI-Tutorial (github.com)</u>