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Introduction

• Deep learning has expanded in recent years
• Availability of big data

• Improvements in hardware (GPU/TPU)

• Open source libraries

• Data is not always available in all cases
• Expensive

• Time consuming

• But may have good physical understanding of system
• Scientific experiments

• Hardware design

• Solution: Include physics of problem into neural networks to train with much 
less data
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Karniadakis et al 2021

https://www.nature.com/articles/s42254-021-00314-5.epdf?sharing_token=CB2WeS9YL9dv4AHZxzOcLNRgN0jAjWel9jnR3ZoTv0M7_1xVZiNmEqz41FIe0PTNcptVRcNVo4lxX6z5z5ue0CinySt4e987UIs2BfeT3osjHsmVA_CJGw5ezWYf49jtJYgSFmRE4nePIK05VYf3ZO2Uc6nTgVxKj4Nr5OvIXUI%3D
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How Can Physics Help?
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• Neural networks retain bias of its 
training data
• Gender bias in NLP (Sun et al 2019)

• Racial and age bias in image recognition 
(Nagpal et al 2019 )

• Some bias can be removed
• Data augmentation
• Increase data quantity

• Physics knowledge can remove data 
biases system with well understood 
physics
• Symmetries
• Conservation laws
• Partial differential equations (PDEs)

Karniadakis et al 2021

https://arxiv.org/abs/1904.01219
https://arxiv.org/abs/1904.01219
https://www.nature.com/articles/s42254-021-00314-5.epdf?sharing_token=CB2WeS9YL9dv4AHZxzOcLNRgN0jAjWel9jnR3ZoTv0M7_1xVZiNmEqz41FIe0PTNcptVRcNVo4lxX6z5z5ue0CinySt4e987UIs2BfeT3osjHsmVA_CJGw5ezWYf49jtJYgSFmRE4nePIK05VYf3ZO2Uc6nTgVxKj4Nr5OvIXUI%3D
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How to Encode Physics into Neural Networks

• Add known physical laws into loss function
• Introduces soft constraints 

• Improves with more training

• Encode derivatives by employing automatic 
differentiation
• Accurate

• Fast

• Weight data and physical laws to improve 
training

• May need second derivatives  No ReLU
activation function

• Normalize equations
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Karniadakis et al 2021

https://www.nature.com/articles/s42254-021-00314-5.epdf?sharing_token=CB2WeS9YL9dv4AHZxzOcLNRgN0jAjWel9jnR3ZoTv0M7_1xVZiNmEqz41FIe0PTNcptVRcNVo4lxX6z5z5ue0CinySt4e987UIs2BfeT3osjHsmVA_CJGw5ezWYf49jtJYgSFmRE4nePIK05VYf3ZO2Uc6nTgVxKj4Nr5OvIXUI%3D
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Traditional Physics Informed Neural Networks (PINNs)

• PINNs are the most well known type of physics informed deep learning models

• Inputs 
• Coordinates (space and/or time)
• May add auxiliary variables to input

• Outputs
• PDE solution fields
• May add other outputs (inverse problems)

• Train by constraining encoded physics
• Randomly sample domain
• May add known data

• Trained for a single case
• 1 set of ICs/BCs
• 1 set of PDEs  cannot modify source terms
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Lu et al 2019

https://arxiv.org/abs/1907.04502
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Types of Problems for PINNs

• Forward problems
• Solve PDEs within specified domain

• We will look at using PINNs to solve 
various forward problems

• Inverse problems 
• Given data that obeys a known (or 

partially known) PDE

• Compute quantities of interest
• Flow field from sensors at a few locations

• Unknown PDE coefficients from data

• We will look at finding unknown 
coefficients for a Lorentz system
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https://www.sciencedirect.com/science/article/pii/S0021999118307125
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Applications of PINNs Forward Problems

• Optimize PDE over auxiliary variables
• FPGA design optimization of heatsink 

geometric configurations (Hennigh et al 2021)

• Simulations over very complex 
geometries
• Brain aneurysm blood flow (Hennigh et al 2021)

• Use transfer learning to reduce training 
time
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Hennigh et al 2021

https://link.springer.com/chapter/10.1007/978-3-030-77977-1_36#Sec10
https://link.springer.com/chapter/10.1007/978-3-030-77977-1_36#Sec9
https://link.springer.com/chapter/10.1007/978-3-030-77977-1_36
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Applications of PINNs Inverse Problems

• Reconstruct fields from limited 
sensor data in ill-posed problems
• Construct fluid flow from a coffee 

cup (Cai et al. 2021)

• Used temperature measurements 
to construct velocity and pressure 
data

• Analysis of scientific experiments
• Well understood models

• Controlled environments
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Karniadakis et al 2021

https://arxiv.org/abs/2105.09506
https://www.nature.com/articles/s42254-021-00314-5.epdf?sharing_token=CB2WeS9YL9dv4AHZxzOcLNRgN0jAjWel9jnR3ZoTv0M7_1xVZiNmEqz41FIe0PTNcptVRcNVo4lxX6z5z5ue0CinySt4e987UIs2BfeT3osjHsmVA_CJGw5ezWYf49jtJYgSFmRE4nePIK05VYf3ZO2Uc6nTgVxKj4Nr5OvIXUI%3D
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PINN Software

• Deepxde (https://github.com/lululxvi/deepxde) Will use deepxde for our 
tutorials

• NVIDIA Modulus/SimNet (Modulus | NVIDIA Developer)

• SciANN (https://github.com/sciann/sciann)

• Elvet (https://gitlab.com/elvet/elvet)

• TensorDiffEq (https://github.com/tensordiffeq/TensorDiffEq)

• NeuroDiffEq (https://github.com/analysiscenter/pydens)

• NeuralPDE (https://github.com/SciML/NeuralPDE.jl) 

• Universal Differential Equations for Scientific Machine Learning 
(https://github.com/ChrisRackauckas/universal_differential_equations) 

• IDRLnet (https://github.com/idrl-lab/idrlnet)
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https://github.com/lululxvi/deepxde
https://developer.nvidia.com/modulus
https://github.com/sciann/sciann
https://gitlab.com/elvet/elvet
https://github.com/tensordiffeq/TensorDiffEq
https://github.com/analysiscenter/pydens
https://github.com/SciML/NeuralPDE.jl
https://github.com/ChrisRackauckas/universal_differential_equations
https://github.com/idrl-lab/idrlnet
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Limitations of PINNs

• Only trained for a single set of ICs/BCs/source terms  need to retrain for each 
new configuration

• Pure PINNs make poor surrogate models

• Will look at operator networks for solving PDEs with variable input fields
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PINNs Exercises

• shawnrosofsky/HAL-Physics-Informed-AI-Tutorial (github.com)
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https://github.com/shawnrosofsky/HAL-Physics-Informed-AI-Tutorial
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Operator Networks

• Learn output field for a given input field

• Can learn variable ICs, BCs, and/or 
source terms

• Need to generate data for many input 
fields

• May use physics information to improve 
performance

• Examples
• DeepONets (Lu et al 2021)

• Physics Informed DeepONets (Wang et al 2021)

• Graph Operator Networks (Li et al 2020)

• Fourier Operator Networks (Li et al 2020)

• PINOs (Li et al 2021)

Shawn Rosofsky 12Neural Operator (zongyi-li.github.io)

https://www.nature.com/articles/s42256-021-00302-5
https://www.science.org/doi/10.1126/sciadv.abi8605
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2111.03794
https://zongyi-li.github.io/neural-operator/
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Physics Informed DeepONets
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• DeepONets can generalize PDE solutions (Lu et al 2021)

• Input field 𝑢 Initial conditions, source terms, and/or boundary conditions

• Input coordinate 𝑦 space and time

• Output operator 𝐺(𝑢)(𝑦) PDE solution

• Difference between data 𝑠 and operator 𝐺 𝑢 𝑦 is our loss ℒ𝑑𝑎𝑡𝑎

• Physics informed DeepONets improve performance with less data (Wang et al 2021)

• Incorporate PDE into loss ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠
• Incorporate ICs into loss ℒ𝐼𝐶
• Incorporate BCs into loss ℒ𝐵𝐶

Wang et al 2021

https://www.nature.com/articles/s42256-021-00302-5
https://www.science.org/doi/10.1126/sciadv.abi8605
https://www.science.org/doi/10.1126/sciadv.abi8605


HAL Training Series: Physics Informed Deep Learning

Training Physics Informed DeepONets

• Generate 𝑢 using Gaussian random fields 
(GRF)
• Use RBF or Matérn kernel to obtain spatially 

correlated random data

• Apply length scale 𝑙 associated with typical 
spatial deviations

• Expand in Fourier components to obey boundary 
conditions

• Run simulations for each 𝑢 to generate 
training data

• Sample the solution space during training
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Physics Informed DeepONet Tests
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• 1D Diffusion Reaction Equation 
• 𝜕𝑡𝑠 = 𝐷 𝜕𝑥𝑥𝑠 + 𝑘 𝑠2 + 𝑢 𝑥

• 𝑢 is a source term

• Homogenous Dirichlet BC

• Zero IC  𝑠 𝑥, 0 = 0

• 𝑘 = 𝐷 = 0.01

• 1D Viscous Burgers Equation
• 𝜕𝑡𝑠 + 𝑠 𝜕𝑥𝑠 − 𝜈 𝜕𝑥𝑥

2 𝑠 = 0

• 𝑢 is the IC

• Periodic BC

• 𝜈 = 0.01

• 1D Wave Equation
• 𝜕𝑡𝑡𝑠 − 𝑐2𝜕𝑥𝑥

2 𝑠 = 0

• 𝑢 is the IC

• Periodic BC

• 𝑐 = 1
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Diffusion Reaction Equation Results on Test Data:
𝜕𝑡𝑠 = 𝐷 𝜕𝑥𝑥𝑠 + 𝑘 𝑠2 + 𝑢 𝑥

Shawn Rosofsky 16



HAL Training Series: Physics Informed Deep Learning

Viscous Burgers Equation Results on Test Data
𝜕𝑡𝑠 + 𝑠 𝜕𝑥𝑠 − 𝜈 𝜕𝑥𝑥

2 𝑠 = 0
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Wave Equation Results on Test Data
𝜕𝑡𝑡𝑠 − 𝑐2𝜕𝑥𝑥

2 𝑠 = 0
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Physics Informed DeepONet Excercises

• shawnrosofsky/HAL-Physics-Informed-AI-Tutorial (github.com)
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https://github.com/shawnrosofsky/HAL-Physics-Informed-AI-Tutorial

