Exploring Robustness of Physics-Informed Neural Networks

arxiv: 2110.13330

github: https://github.com/CVC-Lab/RobustPINNs

Avik Roy November 10, 2021

Neural Networks are Function Estimators

- Neural Networks are universal function approximators
- A network can approximate well-behaved nonlinear functions with arbitrary accuracy when equipped with
 - o sufficiently large number of nodes and hidden layers
 - nonlinear activations
 - a large training dataset
- A NN can become a reliable surrogate for a nonlinear function

Input features *x*A control of the control of the

Desired Output f(x)

- Can we learn a function when the physics of a function is known?
- Evolution of physical fields often described by partial differential equations - can we use NNs to find their solutions?
- PINN: A neural network trained to approximate spatio-temporal evolution of a set of complex fields



Physics-Informed Neural Network (PINN)

- PINNs can solve a set of coupled PDEs when
 - The PDEs are known to be uniquely solvable
 - The spatio-temporal boundary conditions are known
- The parameters (θ) are optimized to enforce the physics by evaluating the gradients of the NN surrogate of the fields and enforcing the physics
- A potentially powerful tool for learning physical systems where data is expensive, so training must depend on small datasets
- Exploits Autograd functionality of modern ML libraries to construct loss functions for training MLPs

Formulation of PINNs - The Setup

The physics (i.e. the PDE):

$$\mathcal{N}\left[u(\vec{x}), f(\vec{x})\right] = 0$$

A set of initial/boundary conditions:

$$\mathcal{B}\left[u(\vec{x}\in\partial D)\right] = 0$$

• A DNN surrogate of the solution

$$\tilde{u}(\vec{x}) = \mathbf{NN}_{\theta} \left(\vec{x}; \mathcal{U}_{B}, \mathcal{U}_{C}, \mathcal{U}_{D} \right)$$

Collection of Fields described by the PDE

Analytically known source functions

Domain boundary

Training Datasets

The Training Datasets

The dataset:

Boundary points: A collection of measurement points on the domain boundary and known physical measurements at those points

$$\mathcal{U}_B = \{ (\vec{x}_i^b, \mathcal{B}[u(\vec{x}_i^b)])_{i=1}^{N_b} \}$$

 Collocation points: A collection of large number of points within the domain and known source function values at those points

$$\mathcal{U}_C = \{ (\vec{x}_i^c, f(\vec{x}_i^c))_{i=1}^{N_c} \}$$

Data points (optional): Any set of additional measurements of the fields

$$\mathcal{U}_D = \{ (\vec{x}_i^d, u(\vec{x}_i^d))_{i=1}^{N_d} \}$$

Formulation of PINNs - The Training

• The Loss function:
$$\mathcal{L}_{PINN} = lpha_{BC}\mathcal{L}_{BC} + lpha_{PDE}\mathcal{L}_{PDE} + lpha_{D}\mathcal{L}_{D}$$

$$oldsymbol{\omega}$$
 Boundary Loss: $\mathcal{L}_{BC} = rac{1}{N_b} \sum_i \left| \mathcal{B}[ilde{u}(ec{x}_i^b)]
ight|^2$

Physics Loss:
$$\mathcal{L}_{PDE} = rac{1}{N_c} \sum_i \left| \mathcal{N}[ilde{u}(ec{x}_i^c), f(ec{x}_i^c)]
ight|^2$$

$$oldsymbol{\Phi}$$
 Data Loss: $\mathcal{L}_D = rac{1}{N_d} \sum_i \left| ilde{u}(ec{x}_i^d) - u(ec{x}_i^d)
ight|^2$

• The parameters of the DNN are obtained from loss minimization:

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}_{PINN}$$

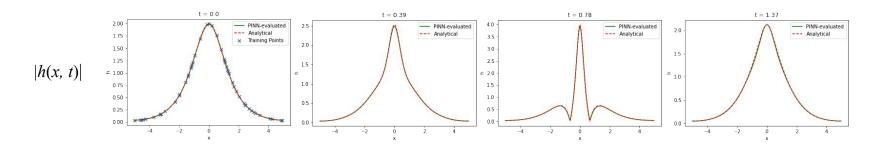
An Example Problem: Nonlinear Schrödinger Equation

• Spatio-temporal evolution of 1D complex field h(x, t) = u(x, t) + iv(x, t)

$$\mathcal{N} := i\frac{\partial h}{\partial t} + \frac{1}{2}\frac{\partial^2 h}{\partial x^2} + |h|^2 h = 0$$
$$(x, t) \in [-5, 5] \times [0, \pi/2]$$

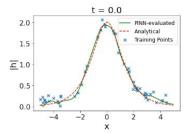
- h(x, t) may represent traveling EM field in optical fibers or planar waveguides
- Cauchy Boundary Conditions:
 - Field evaluation on a sample of points on initial timeslice: $h(x_i, 0) = 2 \operatorname{sech}(x_i) + \varepsilon_i$
 - Periodic boundary conditions: $h(+5, t_i) = h(-5, t_i)$ and $h_x(+5, t_i) = h_x(-5, t_i)$
- $oldsymbol{\epsilon}_i$ represents a complex corruption error, when enabled each component is drawn from zero-mean Gaussian distributions

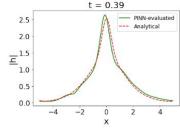
- Training with error free data: $\varepsilon_i = 0$
- The NN is a simple MLP with 6 hidden layers with 70 nodes per hidden layer
- 50 points taken on initial timeslice and 50 more for the periodic boundary conditions
- 20000 randomly points chosen points within the space-time grid to enforce physics
- Iterated for 50k times with Adam optimizer with a learning rate of 1e-3

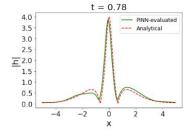


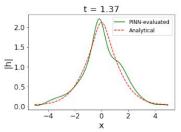
Error Propagation in PINNs: $\varepsilon_i \neq 0$

- Data collected on domain boundary can be subject to noise, errors in measurement, or systematic uncertainties
- Choosing each component of ε_i from a zero mean Gaussian distribution with a standard deviation of 0.1 and training with the same architecture
- Overfitted PINNs tend to propagate errors









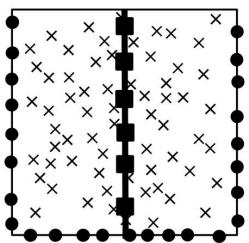
Overfitting PINNs

- PINNs fail to self-correct when initial dataset is corrupted
- For a PINN to work we need $N_c >> N_b$
- The number of parameters for a PINN architecture is much larger than the number of training points - leads to overfitting
- PINN converges to a local minima of the loss function where physics is obeyed and the field overfits on the domain boundary
- The PINN dynamically propagates the overfitted field over the entire domain

Regularization of PINNs-I: continuity conservation

- Can we regularize PINNs using physics inspired regularization?
- One variant of PINN is called conservative PINNs-
 - Divide the domain into smaller subdomains
 - Train a PINN for each subdomain
 - Apply functional and flux continuity on subdomain interfaces

$$\mathcal{L}_{cPINN} = \sum_{j=1}^{d} \mathcal{L}_{PINN}^{j} + \alpha_{I} \mathcal{L}_{I}^{j}$$



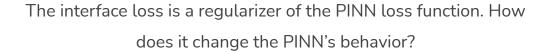
- Boundary points
- Interface points
- Collocation points

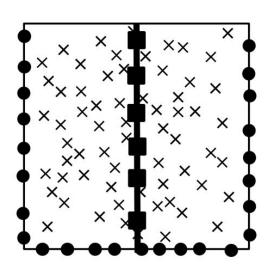
The cPINN Loss Function

$$\mathcal{L}_{cPINN} = \sum_{j=1}^{d} \mathcal{L}_{PINN}^{j} + \alpha_{I} \mathcal{L}_{I}^{j}$$

PINN loss Interface loss

$$\mathcal{L}_{I}^{j} = \frac{1}{N_{Ij}} \sum_{i=1}^{N_{Ij}} \left(\left| \tilde{u}_{j}(\vec{x}_{i}^{j}) - \tilde{u}_{j+1}(\vec{x}_{i}^{j}) \right|^{2} + \left| \nabla \tilde{u}_{j}(\vec{x}_{i}^{j}) \cdot \mathbf{n_{i}^{j}} - \nabla \tilde{u}_{j+1}(\vec{x}_{i}^{j}) \cdot \mathbf{n_{i}^{j+1}} \right|^{2} \right)$$
Functional continuity



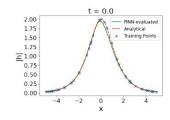


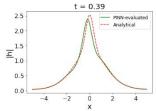
- Boundary points
- Interface points
- × Collocation points

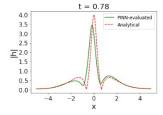
Performance of cPINNs

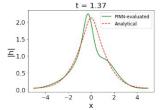
- cPINNs' performance depends on the choice of subdomain boundaries
- cPINNs with two and three equal spatial subdomains with $\varepsilon_1 = 0$

2 domain cPINN

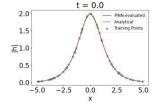


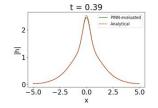


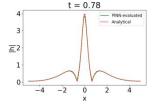


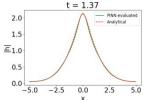


3 domain cPINN



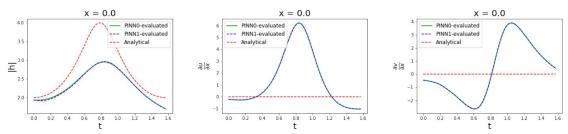




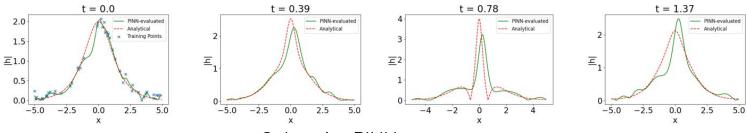


Performance of cPINNs

cPINN can converge without reaching the solution of the analytical solution



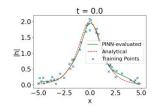
• This behavior of cPINN prohibits it from recovering the intended solution

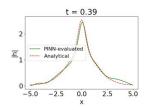


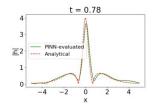
3 domain cPINN, non-zero error

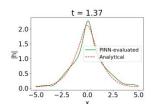
- Conservation laws associated with physical processes can be thought of as regularizers
- One conservation law for nonlinear Schrodinger equation

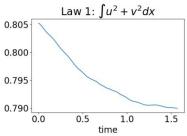
$$\int |h(x,t)|^2 dx = \int (u(x,t)^2 + v(x,t)^2) dx = C$$



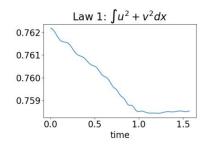








without regularization



with regularization

Introducing Gaussian Processes

- Consider a physical process X_t indexed by some continuous variable t such that for any finite collection of samples $X_i \dots X_k$ represent a jointly Gaussian distribution
- In our case, we can treat the real and imaginary components of the h(x, 0) field as Gaussian processes with

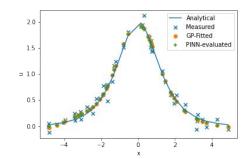
$$\mathbb{E}(U_i) = 2\operatorname{sech}(x = x_i)$$

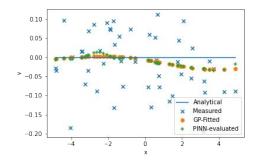
$$\mathbb{E}(V_i) = 0$$

$$\operatorname{Cov}(U_i, U_j) = \operatorname{Cov}(V_i, V_j) = \sigma^2 \delta_{ij}$$

- Based on a set of samples observed for a Gaussian process, one can use Gaussian process regression to obtain a joint distribution of any finite subset of the processes
- Pairwise covariance is estimated by a kernel function

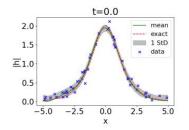
- Applying Gaussian Process based smoothing can suppress error propagation in PINNs
- Instead of using a fixed order polynomial- GPs can prevent underfitting or overfitting in the smoothing process
- Used a RBF + White Noise kernel to fit the dataa useful choice in most cases when the surface data is expected to be sufficiently smooth and errors are uncorrelated

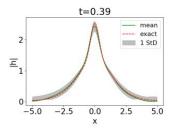


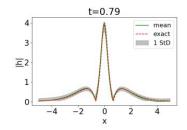


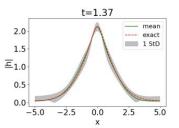
Results from GP-smoothed PINN

- Apply GP Regression (GPR) on initial timeslice based on a cross-validated choice of kernel function
- Use the smoothed evaluation of the field on initial timeslice to train the PINN
- Harness the smoothing power of GPR along with NN's universal approximator to obtain a robust solution of the PDE



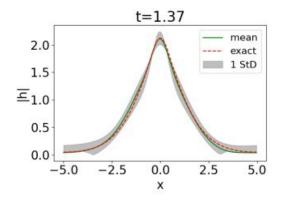






Propagation of Uncertainty

- Error propagation of unregularized PINNs corrupt the estimated lineshape
- GP-smoothed PINN allows recovering the expected lineshape along with a variance estimation for field evolution
- Steps:
 - Train the NN with GP-smoothed initial condition
 - \circ Update the initial condition with $+1\sigma$ or -1σ band of initial condition lineshape
 - Start with optimized θ and retrain the network to reoptimize them to get $\theta \pm \delta \theta$ for the updated initial conditions
 - Draw inference from the reoptimized NNs to get the uncertainty bands at later times



$$\tilde{u}(\vec{x}) \pm \delta \tilde{u}(\vec{x}) = \mathbf{N} \mathbf{N}_{\theta \pm \delta \theta} \left(\vec{x}; \hat{\mathcal{U}}_B^{\pm}, \mathcal{U}_C, \mathcal{U}_D \right)$$

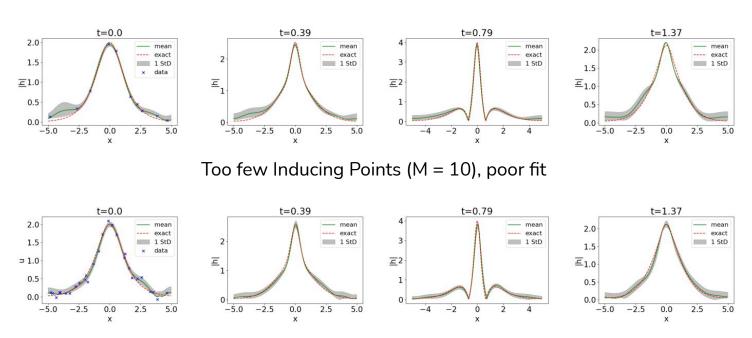
$$\hat{\mathcal{U}}_{B}^{\pm} = \{ (\vec{x}_{i}^{b}, \mathcal{B}[\hat{u}(\vec{x}_{i}^{b}) \pm \delta \hat{u}(\vec{x}_{i}^{b})])_{i=1}^{N_{b}} \}$$

$$(\theta \pm \delta \theta)^* = \operatorname*{argmin}_{\theta} \mathcal{L}_{PINN}(\theta; \hat{\mathcal{U}}_B^{\pm})$$

Sparse Gaussian Processes (SGP) for Smoothing

- Do we need all our observations to optimize the Gaussian Process at the initial timeslice?
- Use a sparse subset of the observations to obtain the optimized GPR
- This selection is based on a greedy algorithm
 - Start with a random subset of the observations
 - Get a tentative fit for the GPR
 - o Only include observations that are "far enough" from current selection of points
 - \circ The total number of points is bounded by some upper limit, M
 - Reoptimize the GPR kernel once all points are selected

Performance of SGP Smoothing



Adequate Inducing Points (M = 30, 29 chosen by the algorithm), reasonable fit

Conclusion

- PINNs: powerful tools in the interface of physics and ML
- Making PINNs robust against noises in training data is an important challenge
- Physics inspired regularizers can fall short to auto-correct against error propagation
- GP smoothed PINNs and its sparse variation can prove useful in ensuring robustness
- Our experiments suggest this provides better safeguard against other proposed methods like adversarial uncertainty quantification