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Neural Networks are Function Estimators

● Neural Networks are universal function approximators

● A network can approximate well-behaved nonlinear functions 

with arbitrary accuracy when equipped with
○ sufficiently large number of nodes and hidden layers

○ nonlinear activations 

○ a large training dataset

● A NN can become a reliable surrogate for a nonlinear function
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Physics-Informed Neural Network (PINN)

● Can we learn a function when the physics of a function 

is known?

● Evolution of physical fields often described by partial 

differential equations - can we use NNs to find their 

solutions?

● PINN: A neural network trained to approximate 

spatio-temporal evolution of a set of complex fields
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Physics-Informed Neural Network (PINN)

● PINNs can solve a set of coupled PDEs when

○ The PDEs are known to be uniquely solvable 

○ The spatio-temporal boundary conditions are known

● The parameters (𝜃) are optimized to enforce the physics by evaluating the 

gradients of the NN surrogate of the fields and enforcing the physics

● A potentially powerful tool for learning physical systems where data is 

expensive, so training must depend on small datasets

● Exploits Autograd functionality of modern ML libraries to construct loss 

functions for training MLPs 
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Formulation of PINNs - The Setup

● The physics (i.e. the PDE): 

● A set of initial/boundary conditions:

● A DNN surrogate of the solution
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The Training Datasets

● The dataset:
○ Boundary points: A collection of measurement points on the domain boundary and known 

physical measurements at those points

○ Collocation points: A collection of large number of points within the domain and known source 

function values at those points 

○ Data points (optional): Any set of additional measurements of the fields
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Formulation of PINNs - The Training

● The Loss function:

● Boundary Loss:

● Physics Loss: 

● Data Loss:

● The parameters of the DNN are obtained from loss minimization:
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An Example Problem: Nonlinear 
Schrӧdinger Equation

● Spatio-temporal evolution of 1D complex field h(x, t) = u(x, t) + iv(x,t)

● h(x, t) may represent traveling EM field in optical fibers or planar waveguides 

● Cauchy Boundary Conditions: 
○ Field evaluation on a sample of points on initial timeslice:  h(xi, 0) = 2 sech(xi) + εi

○ Periodic boundary conditions: h(+5, tj) = h(-5, tj)   and  hx(+5, tj) = hx(-5, tj) 

● εi  represents a complex corruption error, when enabled each component is drawn from 

zero-mean Gaussian distributions 
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(x, t) 𝜖 [-5, 5] × [0, π/2]



Solution obtained from a PINN: Error-free 
data
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● Training with error free data: εi  = 0

● The NN is a simple MLP with 6 hidden layers with 70 nodes per hidden layer

● 50 points taken on initial timeslice and 50 more for the periodic boundary conditions

● 20000 randomly points chosen points within the space-time grid to enforce physics

● Iterated for 50k times with Adam optimizer with a learning rate of 1e-3

|h(x, t)|



Error Propagation in PINNs:εi  ≠ 0 

● Data collected on domain boundary can be subject to noise, errors in measurement, or 

systematic uncertainties

● Choosing each component of εi  from a zero mean Gaussian distribution with a standard 

deviation of 0.1 and training with the same architecture

● Overfitted PINNs tend to propagate errors
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Overfitting PINNs

● PINNs fail to self-correct when initial dataset is corrupted

● For a PINN to work we need Nc >> Nb

● The number of parameters for a PINN architecture is much larger than the number 

of training points - leads to overfitting

● PINN converges to a local minima of the loss function where physics is obeyed 

and the field overfits on the domain boundary

● The PINN dynamically propagates the overfitted field over the entire domain
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Regularization of PINNs-I: continuity 
conservation

● Can we regularize PINNs using physics inspired 

regularization?

● One variant of PINN is called conservative PINNs-
○ Divide the domain into smaller subdomains

○ Train a PINN for each subdomain

○ Apply functional and flux continuity on subdomain interfaces
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● Boundary points
■ Interface points
⨯ Collocation points



The cPINN Loss Function

The interface loss is a regularizer of the PINN loss function. How 

does it change the PINN’s behavior?
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Performance of cPINNs
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● cPINNs’ performance depends on the choice of subdomain boundaries

● cPINNs with two and three equal spatial subdomains with  εi  = 0

2 domain cPINN

3 domain cPINN



● cPINN can converge without reaching the solution of the analytical solution

● This behavior of cPINN prohibits it from recovering the intended solution

3 domain cPINN, non-zero error

Performance of cPINNs
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Regularization of PINNs-II:conservation 
laws

● Conservation laws associated with physical processes can 

be thought of as regularizers

● One conservation law for nonlinear Schrodinger equation
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Introducing Gaussian Processes

● Consider a physical process Xt indexed by some continuous variable t such that for any 

finite collection of samples Xi … Xk represent a jointly Gaussian distribution

● In our case, we can treat the real and imaginary components of the h(x, 0) field as 

Gaussian processes with

● Based on a set of samples observed for a Gaussian process, one can use Gaussian 

process regression to obtain a joint distribution of any finite subset of the processes

● Pairwise covariance is estimated by a kernel function
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Gaussian Process (GP) Based Smoothing

● Applying Gaussian Process based smoothing can 

suppress error propagation in PINNs

● Instead of using a fixed order polynomial- GPs 

can prevent underfitting or overfitting in the 

smoothing process

● Used a RBF + White Noise kernel to fit the data- 

a useful choice in most cases when the surface 

data is expected to be sufficiently smooth and 

errors are uncorrelated
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Results from GP-smoothed PINN
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● Apply GP Regression (GPR) on initial timeslice based on a cross-validated choice 

of kernel function

● Use the smoothed evaluation of the field on initial timeslice to train the PINN

● Harness the smoothing power of GPR along with NN’s universal approximator to 

obtain a robust solution of the PDE



Propagation of Uncertainty
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● Error propagation of unregularized PINNs corrupt the 

estimated lineshape

● GP-smoothed PINN allows recovering the expected 

lineshape along with a variance estimation for field 

evolution

● Steps:
○ Train the NN with GP-smoothed initial condition

○ Update the initial condition with +1𝜎 or -1𝜎 band of initial 

condition lineshape

○ Start with optimized 𝜃 and retrain the network to reoptimize 

them to get 𝜃 ± 𝛿𝜃 for the updated initial conditions

○ Draw inference from the reoptimized NNs to get the 

uncertainty bands at later times



Sparse Gaussian Processes (SGP) for 
Smoothing

● Do we need all our observations to optimize the Gaussian Process at the initial 

timeslice?

● Use a sparse subset of the observations to obtain the optimized GPR

● This selection is based on a greedy algorithm
○ Start with a random subset of the observations

○ Get a tentative fit for the GPR

○ Only include observations that are “far enough” from current selection of points

○ The total number of points is bounded by some upper limit, M

○ Reoptimize the GPR kernel once all points are selected
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Performance of SGP Smoothing
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Too few Inducing Points (M = 10), poor fit

Adequate Inducing Points (M = 30, 29 chosen by the algorithm), reasonable fit



Conclusion

● PINNs: powerful tools in the interface of physics and ML

● Making PINNs robust against noises in training data is an important challenge

● Physics inspired regularizers can fall short to auto-correct against error propagation

● GP smoothed PINNs and its sparse variation can prove useful in ensuring robustness

● Our experiments suggest this provides better safeguard against other proposed 

methods like adversarial uncertainty quantification
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