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Neural Networks are Function Estimators

e Neural Networks are universal function approximators

e A network can approximate well-behaved nonlinear functions

with arbitrary accuracy when equipped with
o  sufficiently large number of nodes and hidden layers
o  nonlinear activations
o alarge training dataset

e A NN can become a reliable surrogate for a nonlinear function
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Physics-Informed Neural Network (PINN)

e (Can we learn a function when the physics of a function I
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is known? I X1 Ao t

e Evolution of physical fields often described by partial

differential equations - can we use NNs to find their I Hidden Layers

solutions? | Parameterized by 6

e PINN: A neural network trained to approximate v
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spatio-temporal evolution of a set of complex fields
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Physics-Informed Neural Network (PINN)

e PINNSs can solve a set of coupled PDEs when
o  The PDEs are known to be uniquely solvable
o  The spatio-temporal boundary conditions are known
e The parameters (0) are optimized to enforce the physics by evaluating the
gradients of the NN surrogate of the fields and enforcing the physics
e A potentially powerful tool for learning physical systems where data is
expensive, so training must depend on small datasets
e Exploits Autograd functionality of modern ML libraries to construct loss

functions for training MLPs



Formulation of PINNs - The Setup

Collection of Fields

e The physics (i.e. the PDE): " described by the PDE
N [u(@), f(Z)] =0

Analytically known
e A set of initial/boundary conditions:

source functions

Blu(Z 8%
Domain boundary

e A DNN surrogate of the solution

u(Z) = NNy (Z; L{B,UC,L@))
4
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The Training Datasets

e The dataset:

o Boundary points: A collection of measurement points on the domain boundary and known

physical measurements at those points

Up = {(Z}, Blu(@)]);2 }

o  Collocation points: A collection of large number of points within the domain and known source

function values at those points

= {(5, £(&9))i1 }

o Data points (optional): Any set of additional measurements of the fields

Up = {(Z], u(@}));2



Formulation of PINNs - The Training

® The Loss function: Lpiny = apcLlpe +appelppe +aplp
1 ]2
e Boundary Loss: Lpc = N, Z |B[U($i)]|
1 ~(—=C —c
e Physics Loss: LppE = N Z N, £( @]
1 - —d 2
e Data Loss: Lp = N, Z |a(z) — u(@)]

e The parameters of the DNN are obtained from loss minimization:

g* = argminﬁpINN
0



An Example Problem: Nonlinear
Schrodinger Equation

e Spatio-temporal evolution of 1D complex field A(x, 1) = u(x, t) + iv(x,?)
Oh  10%h

e 2p
N._zat+28x2+\h\h 0

(x9 t) € [_59 5] X [Oa 7[/2]
e h(x, t) may represent traveling EM field in optical fibers or planar waveguides

e Cauchy Boundary Conditions:

©  Field evaluation on a sample of points on initial timeslice: A(x, 0) = 2 sech(x) + ¢,

o Periodic boundary conditions:  A(+35, tj) = h(-5, tj) and h (+5, tj) =h(-5, tj)
® & represents a complex corruption error, when enabled each component is drawn from

zero-mean Gaussian distributions



Solution obtained from a PINN: Error-free
data

e Training with error free data: € = 0

e The NN is asimple MLP with 6 hidden layers with 70 nodes per hidden layer

e 50 points taken on initial timeslice and 50 more for the periodic boundary conditions
e 20000 randomly points chosen points within the space-time grid to enforce physics

e Iterated for 50k times with Adam optimizer with a learning rate of 1le-3
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Error Propagation in PINNs:€. # O

e Data collected on domain boundary can be subject to noise, errors in measurement, or
systematic uncertainties

e Choosing each component of & from a zero mean Gaussian distribution with a standard
deviation of 0.1 and training with the same architecture

e Overfitted PINNs tend to propagate errors
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Overfitting PINNs

e PINNs fail to self-correct when initial dataset is corrupted

e ForaPINN to work we need N_>>N_

e The number of parameters for a PINN architecture is much larger than the number
of training points - leads to overfitting

e PINN converges to a local minima of the loss function where physics is obeyed
and the field overfits on the domain boundary

e The PINN dynamically propagates the overfitted field over the entire domain
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Reqgularization of PINNs-I: continuity
conservation

e Can we regularize PINNs using physics inspired
regularization?

e One variant of PINN is called conservative PINNs-

o Divide the domain into smaller subdomains
o Train a PINN for each subdomain

o Apply functional and flux continuity on subdomain interfaces

d

_ J ) .
L.pINN = Z ‘CPINN + aI»C[ ° Boundary points
Jj=1 | Interface points
x Collocation points
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The cPINN Loss Function

d
_ J Y]
LepINN = g Lprnny 01l

j=1
PINN loss Interface loss

, 1 N1 .
b (s

4 .2
) n — Vi1 (F) - nJiJrl‘)

Func't|or.\al Flux continuity
continuity

The interface loss is a regularizer of the PINN loss function. How ® Boundary points
does it change the PINN’s behavior? ] Interface points

x Collocation points
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Performance of cPINNs

e CcPINNSs’ performance depends on the choice of subdomain boundaries

e cPINNs with two and three equal spatial subdomains with € =0
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Performance of cPINNs

e cPINN can converge without reaching the solution of the analytical solution
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e This behavior of cPINN prohibits it from recovering the intended solution
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£1.0

Regularization of PINNs-ll:conservation

laws

e Conservation laws associated with physical processes can

be thought of as regularizers

e One conservation law for nonlinear Schrodinger equation

/|h(m,t)|2da: = /(u(x,t)2 +v(z,t)?)dx
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Introducing Gaussian Processes

e Consider a physical process X, indexed by some continuous variable t such that for any
finite collection of samples X. ... X, represent a jointly Gaussian distribution
e In our case, we can treat the real and imaginary components of the h(x, 0) field as
Gaussian processes with
E(U;) = 2sech(z = z;)
E(V;) =0
Cov(U;,U;) = Cov(V;, V;) = 025”
e Based on a set of samples observed for a Gaussian process, one can use Gaussian
process regression to obtain a joint distribution of any finite subset of the processes

e Pairwise covariance is estimated by a kernel function
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Gaussian Process (GP) Based Smoothing

e Applying Gaussian Process based smoothing can ~
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suppress error propagation in PINNs . > PiNN-eveluated

e Instead of using a fixed order polynomial- GPs 210

05
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e Used a RBF + White Noise kernel to fit the data-
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Results from GP-smoothed PINN

e Apply GP Regression (GPR) on initial timeslice based on a cross-validated choice

of kernel function
o Use the smoothed evaluation of the field on initial timeslice to train the PINN

e Harness the smoothing power of GPR along with NN’s universal approximator to

obtain a robust solution of the PDE
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Propagation of Uncertainty

t=1.37

e Error propagation of unregularized PINNs corrupt the

— mean
---- exact

2.0
estimated lineshape

e GP-smoothed PINN allows recovering the expected

lineshape along with a variance estimation for field

evolution

e Steps: . . X
o  Train the NN with GP-smoothed initial condition
o  Update the initial condition with +1¢ or -1¢ band of initial (%) £ 0u(Z¥) = NNyisp (:i:'; LAFBt,UC,MD>
condition lineshape
Uz = {(@, Bla(#) + 6a(@)]);2

o  Start with optimized 6 and retrain the network to reoptimize =1

them to get 6 + §0 for the updated initial conditions (6 + 060)* = argmin £ prny (0;U42)
= =
o Draw inference from the reoptimized NNs to get the i

uncertainty bands at later times
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Sparse Gaussian Processes (SGP) for
Smoothing

e Do we need all our observations to optimize the Gaussian Process at the initial

timeslice?

e Use a sparse subset of the observations to obtain the optimized GPR

e This selection is based on a greedy algorithm

@)

o

o

Start with a random subset of the observations

Get a tentative fit for the GPR

Only include observations that are “far enough” from current selection of points
The total number of points is bounded by some upper limit, M

Reoptimize the GPR kernel once all points are selected
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Performance of SGP Smoothing
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Conclusion

e PINNSs: powerful tools in the interface of physics and ML

e Making PINNs robust against noises in training data is an important challenge

e Physics inspired regularizers can fall short to auto-correct against error propagation
e GP smoothed PINNs and its sparse variation can prove useful in ensuring robustness
e Our experiments suggest this provides better safeguard against other proposed

methods like adversarial uncertainty quantification
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