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Abstract. Identifying the appropriate parameters of a turbulence model for a class of 
flow usually requires extensive experimentation and numerical simulations, even a 
modest improvement of the turbulence model can significantly reduce the overall cost 
of a three-dimensional, time-dependent simulation. In this paper we demonstrate a 
novel method to find the optimal parameters in the Reynolds-averaged Navier–Stokes 
(RANS) turbulence model using high-fidelity direct numerical simulation (DNS) data. 
A physics informed neural network (PINN) that is embedded with the turbulent 
transport equations is studied, physical loss functions are proposed to explicitly 
impose information of the transport equations to deep learning networks. This 
approach solves an inverse problem by treating the five parameters in turbulence 
model as random variables, with the turbulent kinetic energy and dissipation rate as 
known quantities from DNS simulation. The objective is to optimize the five 
parameters in turbulence closures using the PINN leveraging limited data available 
from costly high-fidelity DNS data. We validated this method on two test cases of 
flow over bump. The recommended values were found to be 𝐶𝜀1 = 1.302, 𝐶𝜀2 = 1.862, 
𝐶𝜇 = 0.09, 𝜎𝜅 = 0.75, σε = 0.273, the mean absolute error of the velocity profile between 
RANS and DNS decreased by 22% when used the neural network inferred parameters. 
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1. Introduction  

Reynolds-averaged Navier–Stokes (RANS) simulation remains the workhorse 
computational fluid dynamics (CFD) method for industrial enterprises due to its 
computational efficiency and easy implementation. However, many flows are difficult to 
simulate accurately using RANS models, for example, flow with strong adverse pressure 
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and separation, jet-in-crossflow interactions. The inaccuracy could be due to RANS’s 
inherent simplifications or, more often the case, the use of inappropriate RANS constants 
which usually estimated by fitting to experimental results of simple flows.1 The closure 
model in RANS equations has traditionally evolved through a combined efforts of 
mathematics, flow theory, empiricism, and rudimentary data-driven techniques such as 
single or two variable curve-fitting. These tunable parameters have been determined from 
experiments with air and water for fundamental turbulent boundary layers and free shear 
flows.2 Table 1 lists some of the most commonly ones used in many CFD solvers as the 
default parameter values (we will refer to them as the “default” values). They have been 
found to work well for a wide range of wall-bounded and free shear flows. However, there 
is ample empirical evidence that these parameters are far from being universal3-5 and the 
optimal parameter values can vary substantially for different flow configurations. Thus, it 
is unlikely that the default values of κ-ε model parameters should yield accurate simulations 
for all cases, and calibration (either by experimental or high-fidelity simulation data) for 
each specific flow configuration should be a pre-requisite.6 

Compared to experimental data, high-fidelity simulation data can provide a more 
comprehensive view of the flow than when used for RANS models calibration, as 
simulation data can provide flow quantities which cannot be measured in experiments. If 
high-fidelity simulation data is provided, the calibration process is then an inverse problem 
that given the abundant observable flow field data from simulation, we need to infer the 
unknown parameters in the RANS model transport equations. Solving these inverse 
problems with differential equations, however, is typically computationally prohibitive and 
often requires the solution of ill-posed problems. Early works on optimizing RANS closure 
parameters include schemes like adjoint-based method7, ensemble Kalman filter8, and 
evolution methods like the covariance matrix adaption evolution strategy. Instead of 
minimizing the error of the whole flow fields, the loss functions in these previous works 
usually are some aerodynamic coefficients, for example, the drag coefficient, lift 
coefficient, and the pitching moment coefficient when designing an airfoil. 

In this work we used a physics-informed neural networks (PINN) to calibrate the five 
parameters in κ-ε turbulence model using the whole flow fields from high-fidelity 
simulations. The principal idea behind PINN is that: there are some principled physical laws 
that govern the time-dependent dynamics of a system (e.g. RANS turbulence model), this 
prior information can act as a regularization agent that constrains the space of admissible 
solutions to a manageable size. For example, in incompressible fluid dynamics, we can 
discard any non-realistic flow solutions that violate the conservation of mass principle. In 
return, encoding such structured information into a learning algorithm results in amplifying 
the information content of the data that the algorithm sees, enabling it to quickly steer itself 
towards the right solution and generalize well even when only a few training examples are 
available. The PINN is then grounded in a principled physics model yet offers the flexibility 
of learned representations. 
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It is worthy noted that our study is different with pure data-driven turbulence models, 
where researchers try to map a direct relationship between mean flow quantities with 
Reynolds stress. It is expected that a purely data-driven turbulence model is substantially 
more challenging than a physics-based model, because a turbulence model require to 
discovering both the model form and model parameters, a purely data-driven model will 
abandon the abundant physics in the RANS turbulence model by only relying on the neural 
networks to map the nonlinear relationships. As such, the drawback of purely data-driven 
models is that training datasets play pivoting roles and thus are lack of extrapolation ability, 
or poor generalization. Even though the model fits very well to training data, it cannot 
generalize well to unobserved test data. To overcome this drawback, the datasets are 
required to be sufficiently rich with great variability, which are still lacking. Despite recent 
efforts for efficient creation of datasets with encouraging results, generating the required 
training dataset size still requires substantial computational effort. Rather than improving 
the model-form error, our work only focuses on calibrating the uncertain parameters in the 
RANS model, that is, whether RANS simulations could be improved by using better 
parameters. This work has a similar concept of data assimilation, which involves combining 
observations (high-fidelity simulation data) with “prior knowledge” (mathematical 
representations of RANS turbulence model) to obtain an estimate of the true state (optimal 
parameters in RANS model). By exploiting inside the neural network training the 
underlying physical laws described by turbulence models, the PINN requires substantially 
less training data to achieve high accuracy. This work unlocks a range of opportunities in 
parameters tuning of fluid simulations.  

The paper is organized as follows. Section 2 reviews the RANS κ-ε turbulence model, 
including two transport equations. Section 3 introduces the physics informed neural 
network and its specific application for RANS turbulence modeling. Section 4 runs a study 
case with the “flow over the bump” datasets. Section 5 concludes the paper.  

2. RANS κ-ε turbulence model 

The flow of a viscous incompressible fluid with constant properties is governed by the 
Navier-Stokes equations: 

 
𝜕𝑢𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝑢𝑖𝑢𝑗) = −
𝜕𝑝

𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗

 (1) 

 
𝜕𝑢𝑖

𝜕𝑥𝑗

= 0 (2) 
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where 𝑢𝑖  is the fluid velocity, 𝑝 is the pressure (divided by the density ρ), 𝜈 is the fluid 
kinematic viscosity. In RANS, the Reynolds decomposition will decompose the dependent 
variables into mean and fluctuating parts: 

 𝑢𝑖 = 𝑢�̅� + 𝑢𝑖
′,     𝑝 = �̅� + 𝑝′ (3) 

where 𝑢�̅�  and �̅�  are ensemble averages of 𝑢𝑖  and 𝑝 , respectively, and 𝑢𝑖
′  and 𝑝′  are the 

random fluctuations about the mean field. By substituting the decomposed terms into NS 
equation and taking an ensemble average, one obtains the system of partial differential 
equations that governs the mean-velocity and pressure fields of incompressible turbulence 
flow: 

 
𝜕𝑢�̅�

𝜕𝑡
+ 𝑢�̅�

𝜕𝑢�̅�

𝜕𝑥𝑗

= −
𝜕�̅�

𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢�̅�

𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

 (4) 

 
𝜕𝑢�̅�

𝜕𝑥𝑗

= 0 (5) 

where 𝜏𝑖𝑗 = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is the unclosed Reynolds-stress term that incorporates the effects of 
turbulence motions on the mean stresses. The Reynolds stress tensor contains six 
independent unknowns and solving equations requires approximating the Reynolds stress 
in terms of u, ∇u, or other computable quantities. In the RANS κ-ε turbulence model, this 
term is approximated by the eddy-viscosity model as: 

 𝜏𝑖𝑗 = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ≈
2

3
𝜅𝛿𝑖𝑗 − 2𝜈𝑇𝑆𝑖𝑗

̅̅̅̅  (6) 

where 𝜅 is the average kinetic energy of the velocity fluctuations: 

 𝜅 =
1

2
𝑢𝑖

′𝑢𝑖
′̅̅ ̅̅ ̅̅  (7) 

 𝑆𝑖𝑗
̅̅̅̅  is the strain-rate tensor of the mean field: 

 𝑆𝑖𝑗
̅̅̅̅ =

1

2
(
𝜕𝑢�̅�

𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖

) (8) 

𝜈𝑇  is the turbulent eddy viscosity, in the κ-ε turbulence model, this term is modeled as: 
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 𝜈𝑇 = 𝐶𝜇

𝜅2

𝜀
 (9) 

where 𝜀 is the rate of dissipation of turbulent kinetic energy as: 

 𝜀 = 𝜈
𝜕𝑢𝑖

′

𝜕𝑥𝑗

𝜕𝑢𝑖
′

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (10) 

The transport equations of turbulent kinetic energy and dissipation rate are: 

 
𝜕𝜅
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 (12) 

The two transport equations represent the turbulent properties of flow, they can account 
for history effects like convection and diffusion of turbulent energy. The 𝜅 can be thought 
of as the variable that determines the energy in the turbulence and the 𝜀 determines the 
turbulence scale. The five tunable parameters in the above two transport equations are: 
𝐶𝜀1, 𝐶𝜀2, 𝐶𝜇, 𝜎𝜅 , 𝜎𝜀. Table 1 shows the various model constants that largely be used in CFD 
community. In previous efforts9,10, the parameters are determined by requiring the 
turbulence model to satisfy experimental data for certain simple standard flow cases. In 
Launder and Sharma model, for example, the 𝐶𝜇 coefficient is obtained by considering the 
log-law region of a turbulent boundary layer. The 𝐶𝜀1 is usually fixed from calibrations with 
homogeneous shear flows, and 𝐶𝜀2  is usually determined from the decay rate of 
homogeneous, isotropic turbulence. The last two constants, 𝜎𝜅  and 𝜎𝜀 , are optimized by 
applying the model to various fundamental flows such as flow in channel, pipes, jets, 
wakes.11  

Table 1. The various k-epsilon turbulence models3,9,12,13 constants that largely be used in 
CFD community 

 Launder & 
Sharma 

Jones & 
Launder 

Chien Yakhot & 
Orszag 

𝑪𝜺𝟏 1.44 1.55 1.35 1.063 

𝑪𝜺𝟐 1.92 2.0 1.8 1.7215 
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𝑪𝝁 0.09 0.09 0.09 0.0837 

𝝈𝒌 1.0 1.0 1.0 0.7179 

𝝈𝜺 1.3 1.3 1.3 0.7179 

Previous efforts on clousure coefficient identification include schemes like adjoint-based 
method7, ensemble Kalman filter8, the Bayesian inference combined with some high 
dimensional model representation technique14, and recently the Isogeometric Analysis for 
solving PDE-constrained optimization problems efficiently. The RANS model then requires 
case sensitive parameters in a sense that each category of flow should have their own most 
suitable parameters.6,15 Once the high-fidelity data is available, a flexible and efficient and 
scheme that can easily identify the optimal parameters for a specific category of flow is thus 
imperative.  

3. Physics informed neural network  

The first glimpses of promise for exploiting structured prior information to construct 
data-efficient and physics-informed learning machines have already been showcased in the 
recent studies.16-22 Based on these prior successes, the principal idea behind the PINN is that 
the principled physical laws (usually differential equations) that govern the time-dependent 
dynamic system are treated as the prior, this prior information are embedded in the network 
loss function and then can act as a regularization that constrains the space of admissible 
neural network solutions. The benefits of encoding such structured information is that it 
enables a learning algorithm to quickly steer itself towards the right solution. Such neural 
networks are constrained to respect any symmetries, invariances, or conservation principles 
originating from the physical laws that govern the observed data. In incompressible fluid 
dynamics problems, for example, we can constrain the solution space by discarding any 
non-realistic flow solutions that violate the conservation of mass principle. Figure 1 shows 
the architecture of physics informed neural network for turbulence modeling application. A 
feedforward neural network is constructed to map the relationship between the coordinates, 
velocity with the turbulent kinetic energy and dissipation rate. The five tunable parameters 
in the RANS models are unknowns that we wish the PINN to optimize, the network’s loss 
function combined the mean squared error loss with physical constraints as:  

 𝐿 =
1

𝑁
∑(𝜅𝑟𝑒𝑎𝑙 − 𝜅𝑝𝑟𝑒𝑑)2 +

1

𝑁
∑(𝜀 𝑟𝑒𝑎𝑙 − 𝜀𝑝𝑟𝑒𝑑)2 + 𝒘𝒇 ∗ 𝑓 + 𝒘𝒈 ∗ 𝑔 (13) 
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where the MSE of κ and ε denote the mean squared error loss corresponding to the initial 
high fidelity data, the f and g enforces the physics by penalizing any deviations of the 
predicted physical law. They are defined based on the two transport equations as: 

 𝑓 =  
𝜕𝜅

𝜕𝑡
+ 𝑢�̅�

𝜕𝜅

𝜕𝑥𝑖

+ 𝜏𝑖𝑗

𝜕𝑢�̅�

𝜕𝑥𝑗

+ 𝜀 −
𝜕

𝜕𝑥𝑖

(
𝜈𝑇

𝜎𝐾

𝜕𝜅

𝜕𝑥𝑖

) − 𝜈
𝜕2𝜅

𝜕𝑥𝑖𝜕𝑥𝑖

 (14) 
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𝜀

𝜅
𝜏𝑖𝑗

𝜕𝑢�̅�

𝜕𝑥𝑗

−
𝜕

𝜕𝑥𝑖

(
𝜈𝑇

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑖

) + 𝐶𝜀2

𝜀2

𝜅
− 𝜈

𝜕2𝜀

𝜕𝑥𝑖𝜕𝑥𝑖

 (15) 

We did not need to specify the geometry or the boundary and initial conditions in the 
loss as other PINNs do. The parameters are calibrated not only by minimizing the squared 
residuals over specified collocation points, the two transport equations are also embedded 
to constrain possible neural network solutions.  The model parameters can be calibrated 
according to:  

 𝐶𝜀1, 𝐶𝜀2, 𝐶𝜇 , 𝜎𝜅 , 𝜎𝜀 = argmin 𝐿  (16) 

Minimizing the loss function is usually performed using backpropagation in neural 
network models. In backpropagation, the gradients of an objective function with respect to 
the weights and biases of a deep neural network are calculated by starting off from the 
network output and propagating back towards the input layer using the chain rule. With the 
customized loss, the neural network is optimized under partial differential equation 
constraints. While it seems that the loss function (embedded with transport equations) is too 
sophisticated to quickly get the gradient, the truth is that the differential operations in the 
transport equations are easily adapted and implemented in the deep learning platform, as 
the backpropagation in Tensorflow and the derivatives computation are implemented in 
automatic differentiation. The differential operations in the transport equations can be easily 
embedded in the computational graph by taking advantages of the chain rule in automatic 
differentiation. The loss function is fully then differentiable yet enforced with PDE 
constraints.  
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Figure 1. The architecture of physics informed neural network for turbulence modeling application.  

Automatic differentiation in general, and the back-propagation algorithm is currently the 
dominant approach for training deep models by taking their derivatives with respect to the 
parameters (e.g., weights and biases) of the models. Here, we use the exact same automatic 
differentiation techniques, employed by the deep learning community, to physics-inform 
neural networks by taking their derivatives with respect to their input coordinates (i.e., space 
and time) where the physics is described by partial differential equations. It has been 
empirically observed that this structured approach introduces a regularization mechanism 
that allows us to use relatively simple feed-forward neural network architectures and train 
them with small amounts of data. 

4. Case Study: Channel flow with a lower curved wall 

The high-fidelity DNS dataset is composed of DNS of converging-diverging turbulent 
channel flows at two Reynolds numbers (Reτ=395 and Reτ=617).23,24 The dataset is about 
turbulent boundary layers (TBL) with strong adverse pressure gradient. It is critical to 
understand flow which undergoes separation and subsequent turbulent reattachment in the 
TBL to correctly predict the efficiency of many aerodynamic devices. Such turbulent flows 
have been regarded as being among the most challenging flow dynamics to predict using 
turbulence models.25 It is thus of great interests to study whether turbulence models 
leveraging high-fidelity data can have a more satisfying performance. The dataset includes 
438 and 930 3D velocity and pressure fields for the two Reynolds respectively.26 All the 
terms involved in the balance of each Reynolds stress component are provided. These DNS 
have been designed to test and validate turbulence model as flat channel flow data are used 
for inflow condition. The RANS calculations are performed using the Ansys Fluent v.14.0 
commercial CFD package. The steady-state, two-dimensional, incompressible pressure-
based solver, SIMPLE method, is used with the default settings of the Fluent package. 27 
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Figure 2 shows a comparison of the contour plots of the turbulent kinetic energy. The 
RANS models are found to predict an incorrect evolution in regions of adverse pressure 
gradient. It seems to be related to the fact that these models do not correctly describe the 
evolution of the turbulent kinetic energy close to the walls in adverse pressure gradient 
regions. It is then urgent to optimize the RANS parameters in the hope that the discrepancy 
will, at least to some extent, be attenuated.   

 
Figure 2. A comparison of the contour plots of the time averaged turbulent kinetic energy (top) 

RANS (bottom) DNS when Reτ=395. 

To improve the RANS performance, we calibrate the five tunable parameters by the 
PINNs with the DNS data. The velocities, velocity gradients, pressure, along with other 
terms involved in the turbulent kinetic energy budgets are time and spanwise-averaged. The 
pre-processed DNS data are feed to the PINNs to optimize the five parameters by 
minimizing the customized loss function. The optimized parameters from the PINNs are: 

𝐶𝜀1 = 1.302,  𝐶𝜀2 = 1.862,  𝐶𝜇 = 0.09,  σκ = 0.75,  σε = 0.273 

Figure 3&4 shows the comparison of the time averaged turbulent kinetic energy (κ) and 
dissipation rate (ε) from different simulations (top) DNS, (middle) Default RANS, (bottom) 
PINNs RANS. It is clear there is a big discrepancy between DNS with RANS, especially 
near the downstream wall region, where the adverse pressure gradient is most severe. While 
it is not very intuitive to tell from the contour plots, nevertheless, it is not hard to see that 
RANS with PINNs inferred parameters (bottom ones) are more closely agree to the DNS 
data than the RANS with default parameters (middle ones).  
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Figure 3. A prior: Comparison of the time averaged turbulent kinetic energy from different 

simulations (top) DNS, (middle) Default RANS, (bottom) PINNs RANS.  

 
Figure 4. A prior: Comparison of the time averaged dissipation rate from different simulations 

(top) DNS, (middle) Default RANS, (bottom) PINNs RANS. 

To have a more straightforward understanding of the performance comparison, we plot 
the mean profiles of velocity and turbulence kinetic energy at three locations. These plots 
can allow us to more closely examine the difference of three simulations, especially near 
the wall region. Figure 5-7 plot the mean profile of TKE, x- and y- velocity along the y axis 
at three location when x = 5.7306, x = 6.1399, and x = 6.5493. It shows that RANS with 
PINN inferred parameters gives better results near the wall region.  
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Figure 5. Plots of the turbulent kinetic energy along y axis when x = 5.7306 (left), x = 6.1399 

(middle), x = 6.5493 (right). 

 
Figure 6. Plots of the x-velocity along y axis when x = 5.7306 (left), x = 6.1399 (middle), x = 

6.5493 (right). 

 

Figure 7. Plots of the y-velocity along y axis when x = 5.7306 (left), x = 6.1399 (middle), x = 
6.5493 (right). 

We also have the error contour plots showing the difference of two RANS models with 
DNS results, as showing in Figure 8. Apparently, the error between DNS-NN is relatively 
smaller than the error between DNS-Default. To quantify the performance improvement, 
we measure the mean absolute error (MAE) of the velocity magnitude between DNS and 
RANS. The MAE =  

1

𝑁
∑|𝑉𝐷𝑁𝑆 − 𝑉𝑅𝐴𝑁𝑆| shows that the error of velocity magnitude for all 

the collocation points can be reduced by 22% (from 0.069 to 0.054).  
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Figure 8. A posteriori: Comparison of the error contour plots between RANS and DNS (left is 

the x-velocity, right is the y-velocity). (top) error between DNS-Default; (bottom) error between 
DNS-PINNs, apparently the error in the bottom is relatively much smaller than the error in the top.  

It is recognizable that while there is some improvement for the RANS with inferred 
parameters from PINNs, the error between RANS and DNS is still noteworthy. This 
inaccuracy is due to RANS’s inherent simplifications rather than the inappropriate use of 
RANS constants which usually estimated by fitting to experimental results of simple flows. 
If a more accurate result is required, switch to a more sophisticated model like LES is a 
more feasible option.  

5. Conclusion 

While high fidelity fluid simulation on high performance computing cluster receive great 
achievements recently28,29, Reynolds-averaged Navier–Stokes (RANS) simulation remains 
the workhorse computational fluid dynamics (CFD) method for industrial enterprises. In 
this paper we demonstrate an alternative method to calibrate the parameters in the RANS 
turbulence model with high-fidelity DNS data. We leverage high-resolution DNS data to 
train a deep neural network to learn the mapping between the low-resolution flow and its 
high-resolution counterpart. We used a physics informed neural network (PINN) that is 
embedded with the turbulent transport equations, physical loss functions are proposed to 
explicitly impose information of the transport equations to deep learning networks. This 
approach is an inverse problem by treating the five parameters in turbulence model as 
random variables, with the turbulent kinetic energy and dissipation rate as known quantities 
from DNS simulation. The objective is to optimize the five parameters in turbulence 
closures using the PINN leveraging limited data available from costly high-fidelity DNS 
data. We validated this method on two test cases of flow over bump. The recommended 
values were found to be 𝐶𝜀1 = 1.302, 𝐶𝜀2 = 1.862, 𝐶𝜇 = 0.09, σκ = 0.75, σε = 0.273, the mean 
absolute error of the velocity profile between RANS and DNS decreased by 22% when used 
the neural network inferred parameters. 
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The PINNs for turbulence modeling is an example of approaches that "bake in" the 
physics to address the technical challenges in application of artificial intelligence in 
scientific discovery. This study gives an example of optimize parameters for κ-ε turbulence 
model, it can also be similarly applied to other models, new classes of numerical solvers for 
partial differential equations, as well as new data-driven approaches for model inversion 
and systems identification. 
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Appendix  

 
Figure 9. Comparison of the time averaged x-velocity from different simulations (top) DNS, 

(middle) Default RANS, (bottom) PINNs RANS. 
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Figure 10 Comparison of the time averaged y-velocity from different simulations (top) DNS, 

(middle) Default RANS, (bottom) PINNs RANS. 

 
Figure 11 Comparison of the time averaged pressure from different simulations (top) DNS, 

(middle) Default RANS, (bottom) PINNs RANS. 
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