Getting Started with HAL

https://wiki.ncsa.illinois.edu/display/ISL20/HAL+cluster

Volodymyr Kindratenko

ILLINOIS
NCSA | National Center for Supercomputing Applications

Slides courtesy of Dr. Dawei Mu
HAL System Overview

• NSF-funded IBM cluster for Deep Learning applications
• 16 nodes, 2560 CPU cores, 64 Nvidia GPUs
• 336 TB of All-Flash Storage
• The Origin of the Name
 • 2001: a space odyssey
 • Early concept of an Artificial Intelligence system
IBM Power9 AC922

- 16 IBM AC922 nodes
 - IBM 8335-GTH AC922 server
 - 2x 20-core POWER9 CPU @2.4GHz
 - 256 GB DDR4
 - 4x NVIDIA V100 GPUs
 - 5120 cores
 - 16 GB HBM 2
- 2-Port EDR 100 GB IB ConnectX-5 Adapter
- DDN GS400NVE Flash Array
 - 360 TB usable
 - NVME SSD-based storage
 - Spectrum Scale File System
- Login node
- Data Transfer Node
- OnDemand web interface node
 - H2O-AI
 - Jupyter Notebook
 - Jupyter Lab
 - TensorBoard
 - VS Code

Main software stack
- RHEL 8.4
- CUDA 11.1.2, cuDNN 8.1.1, NCCL 2.8.3
- NVIDIA HPC-SDK 21.5
- IBM XLC, IBM XLFORTRAN
- Advance toolchain for Linux on Power
- WMLCE 1.7.0
- OpenCE 1.6.1
- SLURM & Open OnDemand

DDN GS400NVE Flash Array

HAL cluster
Hardware Accelerated Learning

Award #1725729

IBM Power9 AC922

16 IBM AC922 nodes
- IBM 8335-GTH AC922 server
 - 2x 20-core POWER9 CPU @2.4GHz
 - 256 GB DDR4
 - 4x NVIDIA V100 GPUs
 - 5120 cores
 - 16 GB HBM 2
- 2-Port EDR 100 GB IB ConnectX-5 Adapter
- DDN GS400NVE Flash Array
 - 360 TB usable
 - NVME SSD-based storage
 - Spectrum Scale File System
- Login node
- Data Transfer Node
- OnDemand web interface node
 - H2O-AI
 - Jupyter Notebook
 - Jupyter Lab
 - TensorBoard
 - VS Code

Main software stack
- RHEL 8.4
- CUDA 11.1.2, cuDNN 8.1.1, NCCL 2.8.3
- NVIDIA HPC-SDK 21.5
- IBM XLC, IBM XLFORTRAN
- Advance toolchain for Linux on Power
- WMLCE 1.7.0
- OpenCE 1.6.1
- SLURM & Open OnDemand

DDN GS400NVE Flash Array
HAL System Overview: IBM AC922 server

IBM POWER9

NVIDIA V100

NVIDIA V100

NVIDIA V100

NVIDIA V100

CPU DDR

170 GB/s

IBM POWER9

X Bus

IBM POWER9

170 GB/s

CPU DDR

75 GB/s

75 GB/s
HAL System Overview: CPU

- **IBM POWER9 CPUs**
 - 14nm finFET semiconductor
 - Stronger Thread Performance – SMT
 - POWER ISA 3.0 Architecture
 - Enhanced Cache Hierarchy
 - NVIDIA NVLink 2.0
 - I/O System – PCIe Gen4
- **2x 20 Cores with SMT4**
 - Map to OS as 160 CPUs per node
HAL System Overview: GPU

- NVIDIA V100 GPUs
 - Peak 7.8 TFLOP/s (double-precision).
 - Peak 15 TFLOP/s (single-precision).
 - SM / Cores: 80 / 5120.
 - HBM2 Memory 16 GB: 900 GB/s.
 - Config up to 128 KB L1 Cache per SM.
 - Config up to 96 KB Shared Memory per SM.
 - Constant memory 64 KB.
 - 65536 32-bit Registers per SM.
 - Clock Frequency: 1530 MHz
HAL Software Overview

• HAL Software
 • OS : Red Hat Enterprise Linux (RHEL) 8.4
 • Compilers :
 • GNU 8.4.1
 • CUDA 11.4.48
 • Nvidia HPC SDK 21.5
 • Tools :
 • OpenCE 1.3.1
 • PowerAI 1.7.0 (Watson Machine Learning Community Edition)
 • OpenMPI 4.1.1
 • CMake 3.20.3
 • Singularity 3.8.0
Connection

• Login Node
 • 1x IBM 9006-12P Login Node
 • 1x IBM 9006-22P Login Node

• Connect with SSH
 • ssh <userid>@hal.ncsa.illinois.edu
 • ssh <userid>@hal-login2.ncsa.illinois.edu

• Connect with SFTP
 • sftp <userid>@hal.ncsa.illinois.edu
 • sftp <userid>@hal-login2.ncsa.illinois.edu
Programming Environment

• **Environment Management**
 • Environment modules are provided through Lmod, a Lua-based module system for dynamically altering environments.

• **General Usage**
 • `module avail` : shows a table of the currently available modules.
 • `module list` : shows a list of the currently loaded modules.
 • `module purge` : unloads all loaded modules
 • `module unload` : unloads module into the current environment
 • `module load` : loads module into the current environment
Slurm Workload Manager
Slurm Policy on HAL

- Maximum 5 running jobs per user;
- Maximum 5 activate nodes per user;
- Maximum 16 activate GPUs per user;
- Maximum 24 hours per job.
Slurm Workload Manager

• Original Slurm command could be complex:
 • `srun --partition=gpu --time=24:00:00 --nodes=1 --ntasks-per-node=160 --sockets-per-node=2 --cores-per-socket=20 --threads-per-core=4 --mem-per-cpu=1200 --wait=0 --export=ALL --gres=gpu:v100:4 --pty /bin/bash`

• Need to specify amount of allocation time, type of resources (CPU, GPU, memory), what to execute, etc.
Slurm Wrapper Suite

Rule of Thumb
- Minimize the required input options.
- Consistent with the original "slurm" run-script format.
- Submits job to suitable partition based on the number of GPUs.
“swrun” Usage

- Only 4 options
 - Partition (required)
 - CPUs Per GPU (optional)
 - Wall Time (optional)
 - Singularity Container (optional)

Restrictions

- Partitions vary by GPU number (gpux1, gpux2, gpux3, …)
- CPU Per GPU (16 <= c <= 40, default 16)
- Wall Time (1 <= t <= 24, default 4 hours)

Default if selecting 1 gpu

- gpux1(required), 16x CPUs, 19.2 GB Memory, 1x GPU, 4 Hrs
Slurm Wrapper Suite

• “swrun” Usage
 • Debug queue
 • Only need to set time to 4 hours or less on queue “gpux1/2/3/4” and “cpu”
 • Multi-nodes queue less than 4 hours still go to normal queue
 • Singularity
 • swrun -p gpux4 -s powerai -c 40 -t 24
 • “-s”: using singularity image for this job
 • “powerai”: the name of singularity image “powerai.sif”
 • export “HAL_CONTAINER_REGISTRY” to your own directory
 • Example workflow:
 • Export HAL_CONTAINER_REGISTRY=$HOME/container/pool
 • Then specify the image as above or in your batch script as
 • #SBATCH --singularity=powerai
Slurm Wrapper Suite

- Original Slurm command could be complex:
 - `srun --partition=gpu --time=24:00:00 --nodes=1 --ntasks-per-node=160 --sockets-per-node=2 --cores-per-socket=20 --threads-per-core=4 --mem-per-cpu=1200 --wait=0 --export=ALL --gres=gpu:v100:4 --pty /bin/bash`

- Wrapper command is much simpler:
 - `swrun -p gpux4 -c 40 -t 24`
Slurm Wrapper Suite

• “swbatch” Usage
 • Only 7 options
 • Partition (required)
 • CPUs Per GPU (optional)
 • Wall Time (optional)
 • Job name (optional)
 • Output file (optional)
 • Error file (optional)
 • Singularity Container (optional)
 • Restrictions
 • Partitions vary by GPU number (x1, x2, x3, …)
 • CPU Per GPU (16 <= c <= 40, default 16)
 • Wall Time (1 <= t <= 24, default 4 hours)
Slurm Wrapper Suite

• “swbatch” example:
 • Sample run script - sample.sb vs sample.swb
    ```bash
    #!/bin/bash
    #SBATCH --partition=gpu
    #SBATCH --time=4:00:00
    #SBATCH --nodes=1
    #SBATCH --ntasks-per-node=16
    #SBATCH --sockets-per-node=1
    #SBATCH --cores-per-socket=4
    #SBATCH --threads-per-core=4
    #SBATCH --mem-per-cpu=1200
    #SBATCH --export=ALL
    #SBATCH --gres=gpu:v100:1
    python3 mnist_train_pytorch.py
    =>
    #!/bin/bash
    #SBATCH --partition=gpux1
    python3 mnist_train_pytorch.py
    ```
 • Simply run as: sbatch sample.sb => swbatch sample.swb
Slurm Wrapper Suite

- swqueue (new): show cluster usage within terminal, color coded utilization level.
1. Why partition “gpux1” doesn’t work with “sbatch”?
 - “gpux1”, “gpux2”, … works only with slurm wrapper suite.
 - if use “sbatch”, the valid partitions include “gpu” and “cpu”.

2. Why I get “IndexError: string index out of range” error when using “swbatch”?
 - slurm wrapper suite requires some packages like pyyaml.
 - users should submit your job within the default python env.
 - check “.bashrc” to remove conda related setting.

3. Why my jobs always under queueing?
 - check jobs status with “squeue” for detailed reason.
 - check your recent usage to verify your fair share.
Open OnDemand

• We have implemented the Open OnDemand (OOD) on HAL system as a web-based portal.

• The OOD service including
 • Manage data with Files app.
 • Submit and monitor jobs with Jobs app.
 • Access the cluster with Shell Access app under Clusters.
 • Utilize the Jupyter Notebook, TensorBoard, VS Code and H2O-AI apps under Interactive Apps.
Open OnDemand (main page)

Helpful Information:
1. The detailed user guide can be found at our wiki page.
2. Please email us if you have any question about the HAL system.
3. For instant help from admin and other users, please join our user group Slack spaces.
4. Apple Safari web browser is known for some issue that we can not fix, please use Firefox or Chrome instead.

ILLINOIS
NCSA | National Center for Supercomputing Applications

OnDemand provides an integrated, single access point for all of your HPC resources.
Open OnDemand (files)
Open OnDemand (activate jobs)
Open OnDemand (compose jobs)
Open OnDemand (terminals)
Open OnDemand (jupyter-notebook)
Open OnDemand (jupyter-notebook)
Open OnDemand (jupyter-lab)
Open OnDemand (jupyter-lab)
Open OnDemand (h2o-flow)
Open OnDemand (h2o-flow)
Open OnDemand (tensorboard)
Open OnDemand (tensorboard)
Open OnDemand (vs code server)
Open OnDemand (vs code server)
• Hands-on Demo
• Reservation is hal_training
THANK YOU FOR YOUR TIME!